
所属成套资源:全套人教b版(2019)高中数学必修第二册课时作业含答案
高中数学人教B版 (2019)必修 第二册5.3.5 随机事件的独立性同步达标检测题
展开
这是一份高中数学人教B版 (2019)必修 第二册5.3.5 随机事件的独立性同步达标检测题,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
课时作业(十九) 随机事件的独立性一、选择题1.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,则两人合作译出密码的概率为( )A. B. C. D.2.已知一个古典概型的样本空间Ω和事件A,B如图所示.其中n(Ω)=12,n(A)=6,n(B)=4,n(A∪B)=8,则事件A与事件( )A.是互斥事件,不是独立事件B.不是互斥事件,是独立事件C.既是互斥事件,也是独立事件D.既不是互斥事件,也不是独立事件3.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,x,y构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为( )A. B.C. D.4.(多选)设M,N为两个随机事件,给出以下命题,其中正确命题为( )A.若P(M)=,P(N)=,P(MN)=,则M,N为相互独立事件B.若P()=,P(N)=,P(MN)=,则M,N为相互独立事件C.若P(M)=,P()=,P(MN)=,则M,N为相互独立事件D.若P(M)=,P(N)=,P()=,则M,N为相互独立事件二、填空题5.某市派出甲、乙两支球队参加全省青年组、少年组足球赛,两队夺冠的概率分别为和,则该市足球队取得冠军的概率为________.6.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作,若四个电子元件的使用寿命超过1 000小时的概率都为,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.7.设两个相互独立事件A与B,若事件A发生的概率为p,B发生的概率为1-p,则A与B同时发生的概率的最大值为________.三、解答题8.某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,则给予10分降分资格;若考核为优秀,则给予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为,,,他们考核所得的等级相互独立.求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率. 9.某选修课的考试按A级、B级依次进行,只有当A级成绩合格时,才可继续参加B级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A级考试成绩合格的概率为,B级考试成绩合格的概率为.假设各级考试成绩合格与否均互不影响.(1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率. [尖子生题库]10.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?
相关试卷
这是一份人教B版 (2019)选择性必修 第二册4.3.2 独立性检验课时训练,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中人教B版 (2019)第五章 统计与概率5.3 概率5.3.5 随机事件的独立性课堂检测,共8页。
这是一份高中数学人教B版 (2019)选择性必修 第二册4.1.1 条件概率课后测评,共11页。
