高中数学湘教版(2019)必修 第一册第4章 幂函数、指数函数和对数函数4.4 函数与方程课前预习课件ppt
展开最新课程标准1.结合学过的函数图象,了解函数零点及方程解的关系.2.结合具体连续函数及其图象特点,了解函数零点存在定理,探索用二分法求方程近似解的思路,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.3.收集、阅读一些现实生活、生产实际或者经济领域中的数学模型,体会人们是如何借助函数刻画实际问题的,感悟数学模型中参数的实际意义.
学科核心素养1.了解函数零点存在定理.(数学抽象)2.能利用函数零点存在定理判断零点所在区间.(逻辑推理)3.能利用二分法求方程的近似解.(数学抽象)4.会建立函数模型解决实际问题,并能对不同的函数模型进行选择、比较,用最恰当的函数模型解决实际问题.(数学建模、数学运算)
教材要点要点一 方程的根与函数零点的关系
状元随笔 函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.
要点二 函数零点的判定函数零点存在定理如果函数y=f(x)在区间[a,b]上,当x从a到b逐渐增加时,如果f(x)连续变化且有f(a)·f(b)<0,则存在点x0∈(a,b),使得f(x0)=0.如果知道y=f(x)在区间[a,b]上单调递增或单调递减,就进一步断定,方程f(x)=0在(a,b)内恰有一个根.
状元随笔 定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.
解析:f(1)=ln 2-2<0,f(2)=ln 3-1>0,∴f(1)·f(2)<0,∴函数f(x)的一个零点区间为(1,2).
3.函数f(x)=x3-x的零点个数是( )A.0 B.1C.2 D.3
解析:f(x)=x(x-1)(x+1),令x(x-1)(x+1)=0,解得x=0,x=1,x=-1,即函数的零点为-1,0,1,共3个.
4.若函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是 .
答案:(1)B (2)C
方法归纳函数零点的求法求函数y=f(x)的零点通常有两种方法:其一是令f(x)=0,根据解方程f(x)=0的根求得函数的零点;其二是画出函数y=f(x)的图象,图象与x轴的交点的横坐标即为函数的零点.
方法归纳判断函数零点的个数的方法主要有:(1)对于一般函数的零点个数的判断问题,可以利用零点存在性定理来确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)由f(x)=g(x)-h(x)=0,得g(x)=h(x),在同一坐标系中作出y1=g(x)和y2=h(x)的图象,利用图象判定方程根的个数.
解析:画出函数f(x)的图象,如图所示: 若方程f(x)-m=0有4个不相同的零点,则y=m和f(x)的图象有4个不同的交点,结合图象,0<m≤1,
方法归纳已知函数零点个数求参数范围的常用方法
方法归纳判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.
角度2 由函数零点所在区间求参数范围例5 若函数f(x)=3x2-5x+a的一个零点在区间(-2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是 .
方法归纳根据零点存在定理及函数性质列出不等式组,解不等式组即可求出参数的取值范围.
易错辨析 忽视零点存在定理的条件致误例6 (多选)若函数f(x)的图象在R上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法错误的有( )A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点
解析:由题知f(0)·f(1)<0,所以根据函数零点存在定理可得f(x)在区间(0,1)上一定有零点,又f(1)·f(2)>0,因此无法判断f(x)在区间(1,2)上是否有零点.故选ABD
解析:x≤0时,令x2+2x-3=0,解得x=-3.x>0时,f(x)=ln x-2在(0,+∞)上递增,f(1)=-2<0,f(e3)=1>0,∵f(1)f(e3)<0,∴f(x)在(0,+∞)上有且只有一个零点.综上,f(x)在R上有2个零点.
数学必修 第一册4.4 对数函数课文内容ppt课件: 这是一份数学必修 第一册4.4 对数函数课文内容ppt课件,共18页。PPT课件主要包含了复习回顾,思考1,指数函数,对数函数,思考2,y2x,xlog2y,对数函数的特征,概念理解,当堂练习P131等内容,欢迎下载使用。
湘教版(2019)必修 第二册4.2 平面优质作业课件ppt: 这是一份湘教版(2019)必修 第二册4.2 平面优质作业课件ppt,文件包含441平面与平面平行课件pptx、441平面与平面平行作业docx等2份课件配套教学资源,其中PPT共40页, 欢迎下载使用。
湘教版(2019)必修 第一册3.1 函数精品习题课件ppt: 这是一份湘教版(2019)必修 第一册3.1 函数精品习题课件ppt,文件包含限时小练36方程的根与函数的零点pptx、限时小练36方程的根与函数的零点doc等2份课件配套教学资源,其中PPT共6页, 欢迎下载使用。