辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-03解答题
展开辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-03解答题
一.分式的化简求值(共3小题)
1.(2022•锦州)先化简,再求值:,其中.
2.(2021•锦州)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.
3.(2020•锦州)先化简,再求值:,其中.
二.分式方程的应用(共3小题)
4.(2022•锦州)2022年3月23日“天宫课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价是B款套装单价的1.2倍,用9900元购买的A款套装数量比用7500元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.
5.(2021•锦州)小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.
6.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?
三.二次函数的应用(共3小题)
7.(2022•锦州)某文具店购进一批单价为12元的学习用品,按照相关部门规定其销售单价不低于进价,且不高于进价的1.5倍,通过分析销售情况,发现每天的销售量y(件)与销售单价x(元)满足一次函数关系,且当x=15时,y=50;当x=17时,y=30.
(1)求y与x之间的函数关系式;
(2)这种学习用品的销售单价定为多少时,每天可获得最大利润,最大利润是多少元?
8.(2021•锦州)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
(1)求y与x之间的函数关系式;
(2)设销售收入为P(万元),求P与x之间的函数关系式;
(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
9.(2020•锦州)某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量y(千克)与每千克售价x(元)满足一次函数关系,其部分对应数据如下表所示:
每千克售价x(元)
…
25
30
35
…
日销售量y(千克)
…
110
100
90
…
(1)求y与x之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
四.二次函数综合题(共3小题)
10.(2022•锦州)如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的表达式;
(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,当的值最大时,求点D的坐标;
(3)P为抛物线上一点,连接CP,过点P作PQ⊥CP交抛物线对称轴于点Q,当tan∠PCQ=时,请直接写出点P的横坐标.
11.(2021•锦州)如图1,在平面直角坐标系中,直线y=x+1分别与x轴、y轴交于点A,C,经过点C的抛物线y=x2+bx+c与直线y=x+1的另一个交点为点D,点D的横坐标为6.
(1)求抛物线的表达式.
(2)M为抛物线上的动点.
①N为x轴上一点,当四边形CDMN为平行四边形时,求点M的坐标;
②如图2,点M在直线CD下方,直线OM(OM∥CD的情况除外)交直线CD于点B,作直线BD关于直线OM对称的直线BD′,当直线BD′与坐标轴平行时,直接写出点M的横坐标.
12.(2020•锦州)在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的表达式;
(2)如图,直线y=与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.
①当点F在直线AD上方的抛物线上,且S△EFG=S△OEG时,求m的值;
②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
五.三角形综合题(共1小题)
13.(2021•锦州)在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转α得到DE,连接CE,BE.
(1)如图1,当α=60°时,求证:△CAD≌△CBE;
(2)如图2,当tanα=时,
①探究AD和BE之间的数量关系,并说明理由;
②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
六.切线的判定与性质(共2小题)
14.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.
(1)求证:BF为⊙O的切线;
(2)若AE=4,OF=,求⊙O的半径.
15.(2021•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
(1)求证:CE为⊙O的切线;
(2)若DE=1,CD=3,求⊙O的半径.
七.几何变换综合题(共2小题)
16.(2022•锦州)如图,在△ABC中,,D,E,F分别为AC,AB,BC的中点,连接DE,DF.
(1)如图1,求证:;
(2)如图2,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;
(3)如图3,在(2)的条件下,当DP⊥AB时,求DN的长.
17.(2020•锦州)已知△AOB和△MON都是等腰直角三角形(OA<OM=ON),∠AOB=∠MON=90°.
(1)如图1:连AM,BN,求证:△AOM≌△BON;
(2)若将△MON绕点O顺时针旋转,
①如图2,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;
②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.
八.相似三角形的判定与性质(共1小题)
18.(2020•锦州)如图,▱ABCD的对角线AC,BD交于点E,以AB为直径的⊙O经过点E,与AD交于点F,G是AD延长线上一点,连接BG,交AC于点H,且∠DBG=∠BAD.
(1)求证:BG是⊙O的切线;
(2)若CH=3,tan∠DBG=,求⊙O的直径.
九.解直角三角形的应用-仰角俯角问题(共1小题)
19.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
一十.解直角三角形的应用-方向角问题(共2小题)
20.(2022•锦州)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).
21.(2020•锦州)如图,某海岸边有B,C两码头,C码头位于B码头的正东方向,距B码头40海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距B码头30海里的E处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)
一十一.条形统计图(共3小题)
22.(2022•锦州)某校为了传承中华优秀传统文化,举行“薪火传承育新人”系列活动,组建了四个活动小组:A(经典诵读),B(诗词大赛),C(传统故事),D(汉字听写).学校规定:每名学生必须参加且只能参加其中一个小组.学校随机抽取了部分学生,对其参加活动小组的情况进行了调查.下面图1和图2是根据调查结果绘制的不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)本次随机调查的学生有 名,在扇形统计图中“C”部分圆心角的度数为 ;
(2)通过计算补全条形统计图;
(3)若该校共有1500名学生,请根据以上调查结果,估计参加“B”活动小组的人数.
23.(2021•锦州)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9h.某初中为了解学生每天的睡眠时间,随机调查了部分学生,将学生睡眠时间分为A,B,C,D四组(每名学生必须选择且只能选择一种情况):
A组:睡眠时间<8h
B组:8h≤睡眠时间<9h
C组:9h≤睡眠时间<10h
D组:睡眠时间≥10h
如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)被调查的学生有 人;
(2)通过计算补全条形统计图;
(3)请估计全校1200名学生中睡眠时间不足9h的人数.
24.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题:
(1)此次共抽查了 名学生;
(2)请通过计算补全条形统计图;
(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.
一十二.概率公式(共1小题)
25.(2021•锦州)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
一十三.列表法与树状图法(共2小题)
26.(2022•锦州)小华同学从一副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的甲盒中,再从这副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的乙盒中.
(1)小华同学从甲盒中随机抽取1张,抽到扑克牌花色为“红心”的概率为 ;
(2)小华同学从甲、乙两个盒中各随机抽取1张扑克牌.请用画树状图或列表的方法,求抽到扑克牌花色恰好是1张“红心”和1张“方块”的概率.
27.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.
(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ;
(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.
辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-03解答题
参考答案与试题解析
一.分式的化简求值(共3小题)
1.(2022•锦州)先化简,再求值:,其中.
【解答】解:原式=
=
=
=,
当时,
原式=.
2.(2021•锦州)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.
【解答】解:原式=×
=×
=x(x+2).
把x=﹣2代入,原式=(﹣2)(﹣2+2)=3﹣2.
3.(2020•锦州)先化简,再求值:,其中.
【解答】解:原式=﹣×
=+
=+
=
=.
当x=时,原式==.
二.分式方程的应用(共3小题)
4.(2022•锦州)2022年3月23日“天宫课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价是B款套装单价的1.2倍,用9900元购买的A款套装数量比用7500元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.
【解答】解:设B款套装的单价是x元,则A款套装的单价是1.2x元,
依题意得:﹣=5,
解得:x=150,
经检验,x=150是原方程的解,且符合题意,
∴1.2x=1.2×150=180.
答:A款套装的单价是180元,B款套装的单价是150元.
5.(2021•锦州)小江与小杰两名同学为学校图书馆清点一批图书,小江清点完600本图书比小杰清点完540本图书少用了5min.已知小江平均每分钟清点图书的数量是小杰的1.25倍,求两名同学平均每分钟清点图书各多少本.
【解答】解:设小杰平均每分钟清点图书x本,则小江平均每分钟清点图书1.25x本,
依题意得:﹣=5,
解得:x=12,
经检验,x=12是原方程的解,且符合题意,
∴1.25x=1.25×12=15.
答:小杰平均每分钟清点图书12本,小江平均每分钟清点图书15本.
6.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?
【解答】解:设计划每天生产x顶帐篷,则实际每天生产帐篷(1+25%)x顶,
依题意得:﹣10=.
解得x=200.
经检验x=200是所列方程的解,且符合题意.
答:计划每天生产200顶帐篷.
三.二次函数的应用(共3小题)
7.(2022•锦州)某文具店购进一批单价为12元的学习用品,按照相关部门规定其销售单价不低于进价,且不高于进价的1.5倍,通过分析销售情况,发现每天的销售量y(件)与销售单价x(元)满足一次函数关系,且当x=15时,y=50;当x=17时,y=30.
(1)求y与x之间的函数关系式;
(2)这种学习用品的销售单价定为多少时,每天可获得最大利润,最大利润是多少元?
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
由题意得:,
解得:,
∴y与x之间的函数关系式为y=﹣10x+200;
(2)设每天获得的利润为w元,
由(1)可得:w=(x﹣12)(﹣10x+200)=﹣10x2+320x﹣2400=﹣10(x﹣16)2+160,
∵12≤x≤18,且﹣10<0,
∴当x=16时,w有最大值,最大值为160.
答:这种学习用品的销售单价定为16元时,每天可获得最大利润,最大利润是160元.
8.(2021•锦州)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.
(1)求y与x之间的函数关系式;
(2)设销售收入为P(万元),求P与x之间的函数关系式;
(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
将(20,15),(30,12.5)代入,
可得:,
解得:,
∴y与x之间的函数关系式为y=﹣x+20;
(2)设销售收入为P(万元),
∴P=(1﹣20%)xy=(﹣x+20)x=﹣x2+16x,
∴P与x之间的函数关系式为P=﹣x2+16x;
(3)设销售总利润为W(万元),
∴W=P﹣6.2x﹣m=﹣x2+16x﹣6.2x﹣(50+0.2x),
整理,可得:W=﹣x2+x﹣50,
W=﹣(x﹣24)2+65.2,
∵﹣<0,
∴当x=24时,W有最大值为65.2,
∴原料的质量为24吨时,所获销售利润最大,最大销售利润是65.2万元.
9.(2020•锦州)某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量y(千克)与每千克售价x(元)满足一次函数关系,其部分对应数据如下表所示:
每千克售价x(元)
…
25
30
35
…
日销售量y(千克)
…
110
100
90
…
(1)求y与x之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
【解答】解:(1)设y=kx+b,
将(25,110)、(30,100)代入,得:,
解得:,
∴y=﹣2x+160;
(2)由题意得:(x﹣20)(﹣2x+160)=1000,
即﹣2x2+200x﹣3200=1000,
解得:x=30或70,
又∵每千克售价不低于成本,且不高于40元,即20≤x≤40,
答:该超市要想获得1000的日销售利润,每千克樱桃的售价应定为30元.
(3)设超市日销售利润为w元,
w=(x﹣20)(﹣2x+160),
=﹣2x2+200x﹣3200,
=﹣2(x﹣50)2+1800,
∵﹣2<0,
∴当20≤x≤40时,w随x的增大而增大,
∴当x=40时,w取得最大值为:w=﹣2(40﹣50)2+1800=1600,
答:当每千克樱桃的售价定为40元时日销售利润最大,最大利润是1600元.
四.二次函数综合题(共3小题)
10.(2022•锦州)如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.
(1)求抛物线的表达式;
(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,当的值最大时,求点D的坐标;
(3)P为抛物线上一点,连接CP,过点P作PQ⊥CP交抛物线对称轴于点Q,当tan∠PCQ=时,请直接写出点P的横坐标.
【解答】解:(1)把点A(3,0)和B(﹣1,0)代入得:,
解得:,
∴抛物线的解析式为y=﹣x2+2x+3;
(2)过点D作DH∥y轴,交AC于点H,如图所示:
设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+b,
由(1)可得:C(0,3),
∴,解得:,
∴直线AC的解析式为y=﹣x+3,
∴H(m,﹣m+3),
∴DH=﹣m2+3m,
∵DH∥y轴,
∴△OCN∽△DHN,
∴,
∵,
∴当时,的值最大,
∴;
(3)由题意可得如图所示:
分别过点C、Q作垂线,交过点P作y轴的平行线于点G、H,
∵PQ⊥CP,
∴∠CPQ=∠CGP=∠PHQ=90°,
∴∠CPG+∠PCG=∠CPG+∠QPH=90°,
∴∠PCG=∠QPH,
∴△PCG∽△QPH,
∴,
∵,
∴,
设点P(n,﹣n2+2n+3),
由题意可知:抛物线的对称轴为直线x=1,C(0,3),
∴QH=|n﹣1|,PG=|﹣n2+2n|,
∴,
当时,解得:,
当时,解得:
综上:点P的横坐标为或或或.
11.(2021•锦州)如图1,在平面直角坐标系中,直线y=x+1分别与x轴、y轴交于点A,C,经过点C的抛物线y=x2+bx+c与直线y=x+1的另一个交点为点D,点D的横坐标为6.
(1)求抛物线的表达式.
(2)M为抛物线上的动点.
①N为x轴上一点,当四边形CDMN为平行四边形时,求点M的坐标;
②如图2,点M在直线CD下方,直线OM(OM∥CD的情况除外)交直线CD于点B,作直线BD关于直线OM对称的直线BD′,当直线BD′与坐标轴平行时,直接写出点M的横坐标.
【解答】解:(1)令x=0,则y=x+1=1,
∴C点坐标为(0,1),
令y=0,则,
∴,
∴A点坐标为(,0),
令x=6,则y=,
∴D点坐标为(),
将C,D两点坐标代入到抛物线解析式中得,
,
解得,
∴抛物线的表达式为:y=;
(2)①设N(n,0),
∵四边形CDMN为平行四边形,
∴由平移与坐标关系可得M(n+6,),
∵点M在抛物线上,
∴+1=,
∴n2+9n+4=0,
∴n=,
∴点M的坐标为(,)或(,);
②第一种情况:如图1,当BD′∥x轴时,分别过A,D作x轴的垂线,垂足分别为H,Q,
在直角△ADQ中,AQ=6+=,DQ=,
∴tan∠DAQ==,
∴cos∠DAQ=,
∵∠BAH=∠DAQ,
∴cos∠BAH=,
∵直线BD与直线BD′关于直线OM对称,
∴∠DBM=∠D′BM,
∵BD′∥x轴,
∴∠HOB=∠D′BM=∠DBM,
∴AB=AO=,
∴,
∴AH=,
∴OH=AH+AO=
令x=﹣,则y==,
∴B点坐标为(﹣,﹣),
设直线OB的解析式为y=kx,代入点B得,k=,
∴直线OB的解析式为y=x,
联立,
解得,,
∴点M的横坐标为3或,
第二种情况,如图2,当BD′∥y轴时,设BD′交x轴于H,
∴∠COB=∠OBH,
∵直线BD与直线BD′关于直线OM对称,
∴∠CBO=∠OBH=∠COB,
∴CB=CO=1,
过C作CE⊥BH于E,
∴CE∥x轴,
∴∠BCE=∠CAO,
∵tan∠CAO==,
∴cos∠CAO=,
∴cos∠BCE==,
∴CE==,
∴=,
∵CE⊥BH,BH⊥x轴,
∴∠CEH=∠BHO=∠COH=90°,
∴四边形CEHO为矩形,
∴EH=CO=1,CE=OH=,
∴BH=BE+EH=,
∴点B的坐标为(),
∴直线OB的解析式为y=2x,
联立,
化简得,x211x+4=0,
∴,
∵点M在直线CD下方,
∴x<6,
∴x=,
∴点M的横坐标为,
即点M的横坐标为3或或.
12.(2020•锦州)在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.
(1)求抛物线的表达式;
(2)如图,直线y=与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.
①当点F在直线AD上方的抛物线上,且S△EFG=S△OEG时,求m的值;
②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=﹣x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,
∴y=﹣(x+3)(x﹣4)=﹣;
(2)①如图1,∵B(4,0),C(0,4),
∴设BC的解析式为:y=kx+n,
则,解得,
∴BC的解析式为:y=﹣x+4,
∴﹣x+4=,
解得:x=1,
∴E(1,3),
∵M(m,0),且MH⊥x轴,
∴G(m,),F(m,﹣),
∵S△EFG=S△OEG,
∴=×ON(xE﹣xG),
[(﹣)﹣()](1﹣m)=,
解得:m1=,m2=﹣2;
②存在,由①知:E(1,3),
∵四边形EFHP是正方形,
∴FH=EF,∠EFH=∠FHP=∠HPE=90°,
∵M(m,0),且MH⊥x轴,
∴H(m,﹣m+4),F(m,﹣),
分两种情况:
i)当﹣3≤m<1时,如图2,点F在EP的左侧,
∴FH=(﹣m+4)﹣(﹣)=,
∵EF=FH,
∴,
解得:m1=(舍),m2=,
∴H(,),
∴P(1,),
ii)当1<m<4时,点F在PE的右边,如图3,
同理得﹣=m﹣1,
解得:m1=,m2=(舍),
同理得P(1,);
综上,点P的坐标为:或.
五.三角形综合题(共1小题)
13.(2021•锦州)在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转α得到DE,连接CE,BE.
(1)如图1,当α=60°时,求证:△CAD≌△CBE;
(2)如图2,当tanα=时,
①探究AD和BE之间的数量关系,并说明理由;
②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
【解答】(1)证明:如图1中,
∵α=60°,AC=AB,
∴△ABC是等边三角形,
∴CA=CB,∠ACB=60°,
∵将DC绕点D顺时针旋转α得到DE,
∴DC=DE,∠CDE=60°,
∴△CDE是等边三角形,
∴CD=CE,∠DCE=∠ACB=60°,
∴∠ACD=∠BCE,
∴△CAD≌△CBE(SAS).
(2)解:①结论:=.
如图2中,过点C作CK⊥AB于K.
∵tan∠CAK==,
∴可以假设CK=3k,AK=4k,则AC=AB=5k,BK=AB﹣AK=k,
∴BC==k,
∵∠A=∠CDE,AC=AB,CD=DE,
∴∠ACB=∠ABC=∠DCE=∠DEC,
∴△ACB∽△DCE,
∴=,
∴=,
∵∠ACB=∠DCE,
∴∠ACD=∠BCE,
∴△ACD∽△BCE,
∴===.
②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.
∵AC=5,
由①可知,AK=4,CK=3,BC=,
∵△CAD∽△BCE,CK⊥AD,CJ⊥BE,
∴==(全等三角形对应边上的高的比等于相似比),
∴CJ=,
∴点E的运动轨迹是线段BE,
∵C,R关于BE对称,
∴CR=2CJ=,
∵BJ===,
∵S△CBR=•CR•BJ=•CB•RT,
∴RT==,
∵EC+EH=ER+EH≥RT,
∴EC+EH≥,
∴EC+EH的最小值为.
六.切线的判定与性质(共2小题)
14.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.
(1)求证:BF为⊙O的切线;
(2)若AE=4,OF=,求⊙O的半径.
【解答】(1)证明:如图,连接AD,
AB是圆的直径,则∠ADB=90°,
D为的中点,则∠BAD=∠CAD=∠BAC,
∵,
∴∠CBF=∠BAD,
∵∠BAD+∠ABD=90°,
∴∠ABF=∠ABD+∠CBF=90°,
∴AB⊥BF,
∵OB是⊙O的半径,
∴BF是⊙O的切线;
(2)解:如图,连接BE,
AB是圆的直径,则∠AEB=90°,
∵∠BOD=2∠BAD,∠BAC=2∠BAD,
∴∠BOD=∠BAC,
又∵∠ABF=∠AEB=90°,
∴△OBF∽△AEB,
∴OB:AE=OF:AB,
∴OB:4=:2OB,OB2=9,
OB>0,则OB=3,
∴⊙O的半径为3.
15.(2021•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
(1)求证:CE为⊙O的切线;
(2)若DE=1,CD=3,求⊙O的半径.
【解答】(1)证明:如图1,连接OC,
∵OB=OC,
∴∠OCB=∠OBC,
∵四边形ABCD内接于⊙O,
∴∠CDE=∠OBC,
∵CE⊥AD,
∴∠E=∠CDE+∠ECD=90°,
∵∠ECD=∠BCF,
∴∠OCB+∠BCF=90°,
∴∠OCE=90°,即OC⊥EF,
∵OC是⊙O的半径,
∴CE为⊙O的切线;
(2)解:如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,
∵∠E=∠OCE=90°,
∴四边形OGEC是矩形,
∴OC=EG,OG=EC,
设⊙O的半径为x,
Rt△CDE中,CD=3,DE=1,
∴EC==2,
∴OG=2,GD=x﹣1,OD=x,
由勾股定理得:OD2=OG2+DG2,
∴x2=(2)2+(x﹣1)2,
解得:x=4.5,
∴⊙O的半径是4.5.
七.几何变换综合题(共2小题)
16.(2022•锦州)如图,在△ABC中,,D,E,F分别为AC,AB,BC的中点,连接DE,DF.
(1)如图1,求证:;
(2)如图2,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;
(3)如图3,在(2)的条件下,当DP⊥AB时,求DN的长.
【解答】(1)证明:如图1,连接AF,
∵,D,E,F分别为AC,AB,BC的中点,
∴,AF⊥BC,
∴,
∴;
(2)解:,
理由如下:
连接AF,如图2,
∵,D,E,F分别为AC,AB,BC的中点,
∴,
∴四边形CDEF是平行四边形,
∴∠DEF=∠C,
∵,
∴∠DFC=∠C,
∴∠DFC=∠DEF,
∴180°﹣∠DFC=180°﹣∠DEF,
∴∠DFN=∠DEM,
∵将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,
∴∠EDF=∠PDQ,
∵∠FDN+∠NDE=∠EDM+∠NDE,
∴∠FDN=∠EDM,
∴△DNF∽△DME,
∴,
∴;
(3)解:如图,连接AF,过点C作CH⊥AB于H,
Rt△AFC中,,
∴,
∵,
∴,
∵DP⊥AB,
∴△AGD∽△AHC,
∴,
∴,
Rt△GED中,,
Rt△AGD中,,
∴,
∵EF∥AD,
∴∠EMG=∠ADG,
∴,
∴,
∴,
∵△DNF∽△DME,
∴,
∴.
17.(2020•锦州)已知△AOB和△MON都是等腰直角三角形(OA<OM=ON),∠AOB=∠MON=90°.
(1)如图1:连AM,BN,求证:△AOM≌△BON;
(2)若将△MON绕点O顺时针旋转,
①如图2,当点N恰好在AB边上时,求证:BN2+AN2=2ON2;
②当点A,M,N在同一条直线上时,若OB=4,ON=3,请直接写出线段BN的长.
【解答】(1)证明:如图1中,
∵∠AOB=∠MON=90°,
∴∠AOM=∠BON,
∵AO=BO,OM=ON,
∴△AOM≌△BON(SAS).
(2)①证明:如图2中,连接AM.
同法可证△AOM≌△BON,
∴AM=BN,∠OAM=∠B=45°,
∵∠OAB=∠B=45°,
∴∠MAN=∠OAM+∠OAB=90°,
∴MN2=AN2+AM2,
∵△MON是等腰直角三角形,
∴MN2=2ON2,
∴NB2+AN2=2ON2.
②如图3﹣1中,设OA交BN于J,过点O作OH⊥MN于H.
∵△AOM≌△BON,
∴AM=BN,∠OAM=∠OBN,
∵∠AJN=∠BJO,
∴∠ANJ=∠JOB=90°,
∵OM=ON=3,∠MON=90°,OH⊥MN,
∴MN=3,MH=HN=OH=,
∴AH===,
∴BN=AM=MH+AH=.
如图3﹣2中,同法可证AM=BN=.
八.相似三角形的判定与性质(共1小题)
18.(2020•锦州)如图,▱ABCD的对角线AC,BD交于点E,以AB为直径的⊙O经过点E,与AD交于点F,G是AD延长线上一点,连接BG,交AC于点H,且∠DBG=∠BAD.
(1)求证:BG是⊙O的切线;
(2)若CH=3,tan∠DBG=,求⊙O的直径.
【解答】(1)证明:∵AB为⊙O的直径,
∴∠AEB=90°,
∴∠BAE+∠ABE=90°,
∵四边形ABCD为平行四边形,
∴四边形ABCD为菱形,
∴∠BAE=∠BAD,
∵∠DBG=∠BAD.
∴∠BAE=∠DBG,
∴∠DBG+∠ABE=90°,
∴∠ABG=90°,
∴BG是⊙O的切线;
(2)∵∠ABG=∠AEB=90°,∠HAB=∠BAE,
∴△ABH∽△AEB,
∴AB2=AE•AH,
∵tan∠DBG=,
∴设HE=x,则BE=2x,
∵CH=3,
∴AE=CE=3+x,
∴AH=AE+HE=3+2x,
∴AB2=(3+x)•(3+2x),
∵AB2=BE2+AE2=(2x)2+(3+x)2,
∴(3+x)•(3+2x)=(2x)2+(3+x)2,
解得x=1或0(舍去),
∴AB2=(3+1)(3+2)=20,
∴AB=,
即⊙O的直径为.
九.解直角三角形的应用-仰角俯角问题(共1小题)
19.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
【解答】解:∵山坡BM的坡度i=1:3,
∴i=1:3=tanM,
∵BC∥MN,
∴∠CBD=∠M,
∴tan∠CBD==tanM=1:3,
∴BC=3CD=4.8(m),
在Rt△ABC中,tan∠ACB==tan50°≈1.19,
∴AB≈1.19BC=1.19×4.8≈5.7(m),
即树AB的高度约为5.7m.
一十.解直角三角形的应用-方向角问题(共2小题)
20.(2022•锦州)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).
【解答】解:过B作BD⊥AC于D,
由题意可知∠ABE=30°,∠BAC=30°,则∠C=180°﹣30°﹣30°﹣70°=50°,
在Rt△BCD中,∠C=50°,BC=20(海里),
∴BD=BCsin50°≈20×0.766=15.32(海里),
在Rt△ABD中,∠BAD=30°,BD=15.32(海里),
∴AB=2BD=30.64≈30.6(海里),
答:货轮从A到B航行的距离约为30.6海里.
21.(2020•锦州)如图,某海岸边有B,C两码头,C码头位于B码头的正东方向,距B码头40海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距B码头30海里的E处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)
【解答】解:过D作DF⊥BE于F,
∵∠ADE=∠DEB﹣∠A=60°﹣30°=30°,
∴∠A=∠ADE,
∴AE=DE,
∵∠B=90°,∠A=30°,BC=40(海里),
∴AC=2BC=80(海里),AB=BC=40(海里),
∵BE=30(海里),
∴AE=(40﹣30)(海里),
∴DE=(40﹣30)(海里),
在Rt△DEF中,∵∠DEF=60°,∠DFE=90°,
∴∠EDF=30°,
∴DF=DE=(60﹣15)(海里),
∵∠A=30°,
∴AD=2DF=120﹣30(海里),
∴CD=AC﹣AD=80﹣120+30=海里,
答:乙船与C码头之间的距离为海里.
一十一.条形统计图(共3小题)
22.(2022•锦州)某校为了传承中华优秀传统文化,举行“薪火传承育新人”系列活动,组建了四个活动小组:A(经典诵读),B(诗词大赛),C(传统故事),D(汉字听写).学校规定:每名学生必须参加且只能参加其中一个小组.学校随机抽取了部分学生,对其参加活动小组的情况进行了调查.下面图1和图2是根据调查结果绘制的不完整的统计图.
请根据图中提供的信息,解答下列问题:
(1)本次随机调查的学生有 50 名,在扇形统计图中“C”部分圆心角的度数为 108° ;
(2)通过计算补全条形统计图;
(3)若该校共有1500名学生,请根据以上调查结果,估计参加“B”活动小组的人数.
【解答】解:(1)本次调查的总人数为10÷20%=50(名),
C活动小组人数为50﹣(10+5+20)=15(名),
扇形统计图中,C所对应的扇形的圆心角度数是360°×=108°,
故答案为:50,108°;
(2)由(1)得C活动小组人数为15名,
补全图形如下:
;
(3)估计参加“B”活动小组的人数有1500×=150(名).
答:估计参加“B”活动小组的150名学生.
23.(2021•锦州)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9h.某初中为了解学生每天的睡眠时间,随机调查了部分学生,将学生睡眠时间分为A,B,C,D四组(每名学生必须选择且只能选择一种情况):
A组:睡眠时间<8h
B组:8h≤睡眠时间<9h
C组:9h≤睡眠时间<10h
D组:睡眠时间≥10h
如图1和图2是根据调查结果绘制的不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)被调查的学生有 200 人;
(2)通过计算补全条形统计图;
(3)请估计全校1200名学生中睡眠时间不足9h的人数.
【解答】解:(1)本次共调查了90÷45%=200(人),
故答案为:200;
(2)B组学生有:200﹣20﹣90﹣30=60(人),
补全的条形统计图如图2所示:
(3)1200×=480(人),
即估计该校学生平均每天睡眠时间不足9h的有480人.
24.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题:
(1)此次共抽查了 180 名学生;
(2)请通过计算补全条形统计图;
(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.
【解答】解:(1)这次学校抽查的学生人数是40÷=180(名),
故答案为:180名;
(2)C项目的人数为180﹣46﹣34﹣40=60(名)
条形统计图补充为:
(3)估计全校选择C课程的学生有900×=300(名).
一十二.概率公式(共1小题)
25.(2021•锦州)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
【解答】解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果数,其中两个班级恰好选择一首歌曲的有3种结果,
所以两个班级恰好抽到同一首歌曲的概率为=.
一十三.列表法与树状图法(共2小题)
26.(2022•锦州)小华同学从一副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的甲盒中,再从这副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的乙盒中.
(1)小华同学从甲盒中随机抽取1张,抽到扑克牌花色为“红心”的概率为 ;
(2)小华同学从甲、乙两个盒中各随机抽取1张扑克牌.请用画树状图或列表的方法,求抽到扑克牌花色恰好是1张“红心”和1张“方块”的概率.
【解答】解:(1)小华同学从甲盒中随机抽取1张,抽到扑克牌花色为“红心”的概率为,
故答案为:;
(2)把“红心”,“黑桃”,“方块”,“梅花”扑克牌分别记为A、B、C、D,
画树状图如下:
共有16种等可能的结果,其中抽到扑克牌花色恰好是1张“红心”和1张“方块”的结果有2种,
∴抽到扑克牌花色恰好是1张“红心”和1张“方块”的概率是.
27.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.
(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ;
(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.
【解答】解:(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率为;
故答案为:;
(2)画树状图得:
共有9种等可能的结果,抽到的两张卡片上标有的数字之和大于7的有3种情况,
∴两次抽取的卡片上数字之和大于7的概率为=.
湖北省襄阳市3年(2020-2022)中考数学试卷真题分类汇编-03解答题: 这是一份湖北省襄阳市3年(2020-2022)中考数学试卷真题分类汇编-03解答题,共59页。试卷主要包含了,其中x=,y=﹣1,先化简,再求值,,其中a=﹣,b=+,之间的关系如图所示等内容,欢迎下载使用。
辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-01选择题: 这是一份辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-01选择题,共25页。
辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-02填空题: 这是一份辽宁省锦州市3年(2020-2022)中考数学试卷真题分类汇编-02填空题,共21页。试卷主要包含了不等式>1的解集为 ,的图象交BC于点D等内容,欢迎下载使用。