搜索
    上传资料 赚现金
    英语朗读宝

    初中数学8上13.3.1.2《等腰三角形的判定》同步训练习题含答案

    初中数学8上13.3.1.2《等腰三角形的判定》同步训练习题含答案第1页
    初中数学8上13.3.1.2《等腰三角形的判定》同步训练习题含答案第2页
    初中数学8上13.3.1.2《等腰三角形的判定》同步训练习题含答案第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版八年级上册13.3.1 等腰三角形同步训练题

    展开

    这是一份初中数学人教版八年级上册13.3.1 等腰三角形同步训练题,共17页。试卷主要包含了海里等内容,欢迎下载使用。
    一.选择题
    1.(2014•海南模拟)如图,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )
    A.0个B.1个C.2个D.3个
    2.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )
    A.1个B.2个C.3个D.4个
    3.(2014秋•鹿城区校级期末)下列长度的三线段,能组成等腰三角形的是( )
    A.1,1,2B.2,2,5C.3,3,5D.3,4,5
    4.(2014秋•常熟市校级期末)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有( )
    A.1个B.2个C.3个D.4个

    5.(2014秋•北流市期中)如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是( )
    A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形
    6.(2015•威海模拟)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周长为( )
    A.13B.12C.15D.20

    7.(2014•滦县一模)如图,C表示灯塔,轮船从A处出发以每时30海里的速度向正北(AN)方向航行,2小时后到达B处,测得C在A的北偏东30°方向,并在B的北偏东60°方向,那么B处与灯塔C之间的距离为( )海里.
    A.60B.80C.100D.120
    8.(2014秋•南长区期末)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有( )个.
    A.①②③B.①②④C.①③④D.①②③④
    二.填空题
    9.(2015春•邳州市期末)在△ABC中,∠A=100°,当∠B= °时,△ABC是等腰三角形.
    10.(2015春•盐城校级月考)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm.动点D从点A出发,以每秒1cm的速度沿射线AC运动,当t= 时,△ABD为等腰三角形.


    11.(2015•甘肃模拟)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形): .
    12.(2015•乳山市一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.


    13.(2013秋•兴化市期末)如图,已知△ABC中,AC+BC=16,AO、BO分别是∠CAB、∠ABC的角平分线.MN经过点O,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为 .
    三.解答题
    14.(2015春•揭西县校级月考)如图所示,D为△ABC的边AB的延长线上一点,过D作DF⊥AC,垂足为F,交BC于E,且BD=BE,求证:△ABC是等腰三角形.

    15.(2015春•山亭区期末)如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.
    (1)求∠B的度数,并判断△ABC的形状;
    (2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.

    16.(2015秋•德州校级月考)如图,在△ABC中,CE、CF分别平分∠ACB和△ACB的外角∠ACG,EF∥BC交AC于点D,求证:DE=DF.

    17.(2014秋•金华期中)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
    (1)出发2秒后,求△ABP的周长.
    (2)问t为何值时,△BCP为等腰三角形?
    (3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?


    人教版八年级数学上册
    《等腰三角形的判定》同步训练习题(教师版)

    一.选择题
    1.(2014•海南模拟)如图,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )
    A.0个B.1个C.2个D.3个
    考点:等腰三角形的判定.
    分析:由已知条件,根据等腰三角形的定义及等角对等边先得出∠ABC的度数,由∠ABC的平分线交AC于D,得到其它角的度数,然后进行判断.
    选D
    点评:本题考查了等腰三角形的判定、角平分线的性质及三角形内角和定理;求得各角的度数是正确解答本题的关键.

    2.(2015•永州模拟)在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有( )
    A.1个B.2个C.3个D.4个
    考点: 等腰三角形的判定;坐标与图形性质.
    分析: 如图,分别以点O、A为圆心,以OA或AO为半径画弧,交x轴于三点;作OA的垂直平分线,交x轴于一点,共即四点.
    解答: 解:如图,
    ∵以点O为圆心,以OA为半径画弧,交x轴于点B、C;
    以点A为圆心,以AO为半径画弧,交x轴于一点D(点O除外),
    ∴以OA为腰的等腰三角形有3个;
    作OA的垂直平分线,交x轴于一点,
    ∴以OA为底的等腰三角形有1个,
    综上所述,符合条件的点P共有4个,
    故选:D.
    点评: 该题以平面直角坐标系为载体,以考查等腰三角形的判定为核心构造而成;运用分类讨论的数学思想逐一讨论解析,是解决该题的关键.

    3.(2014秋•鹿城区校级期末)下列长度的三线段,能组成等腰三角形的是( )
    A.1,1,2B.2,2,5C.3,3,5D.3,4,5
    考点: 等腰三角形的判定.
    分析: 根据三角形三边关系以及等腰三角形的判定分别分析得出即可.
    解答: 解:A、∵1+1=2,无法构成三角形,故此选项错误;
    B、∵2+2<5,无法构成三角形,故此选项错误;
    C、∵3+3>5,3=3,故组成等腰三角形,此选项正确;
    D、∵3,4,5没有相等的边,不是等腰三角形,故此选项错误.
    故选:C.
    点评: 此题主要考查了三角形的三边关系以及等腰三角形的判定,正确把握定义是解题关键.
    4.(2014秋•常熟市校级期末)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有( )
    A.1个B.2个C.3个D.4个
    考点: 等腰三角形的判定.
    专题: 网格型.
    分析: 根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰;然后根据S△ABC=1.5,再确定点C的位置.
    解答: 解:如上图:分情况讨论.
    ①AB为等腰△ABC底边时,符合△ABC为等腰三角形的C点有4个;
    ②AB为等腰△ABC其中的一条腰时,符合△ABC为等腰三角形的C点有4个.
    因为S△ABC=1.5,
    所以满足条件的格点C只有两个,如图中蓝色的点.
    故选B.
    点评: 本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.

    5.(2014秋•北流市期中)如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是( )
    A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形
    考点: 等腰三角形的判定;全等三角形的性质.
    分析: 画出图形就能明显看出来,运用全等的性质,易解.
    解答: 解:∵△ADB≌△ADC
    ∴AB=AC
    ∴△ABC是等腰三角形.
    故选D.
    点评: 本题考查了等腰三角形的判定及全等三角形的性质;利用全等三角形的性质是正确解答本题的关键.

    6.(2015•威海模拟)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周长为( )
    A.13B.12C.15D.20
    考点: 等腰三角形的判定与性质;平行线的性质.
    分析: 根据平行线性质和角平分线定义得出∠EDB=∠EBD,推出BE=ED,同理DF=CF,求出△AEF的周长=AB+AC,代入求出即可.
    解答: 解:∵EF∥BC,
    ∴∠EDB=∠DBC,
    ∵BD平分∠ABC,
    ∴∠EBD=∠CBD,
    ∴∠EDB=∠EBD,
    ∴BE=ED,
    同理DF=CF,
    ∴△AEF的周长是AE+EF+AF
    =AE+ED+DF+AF
    =AE+BE+CF+AF
    =AB+AC
    =5+7
    =12.
    故选B.
    点评: 本题考查了平行线性质,等腰三角形的判定,角平分线定义的应用,关键是推出AE+EF+AF=AB+AC

    7.(2014•滦县一模)如图,C表示灯塔,轮船从A处出发以每时30海里的速度向正北(AN)方向航行,2小时后到达B处,测得C在A的北偏东30°方向,并在B的北偏东60°方向,那么B处与灯塔C之间的距离为( )海里.
    A.60B.80C.100D.120
    考点: 等腰三角形的判定与性质;方向角.
    专题: 应用题.
    分析: 将方位表示的角度转化为题目中对应角的度数,再根据等腰三角形的性质即可得到答案.
    解答: 解:∵∠NBC=∠A+∠C,∠NBC=60°,∠A=30°
    ∴∠C=30°.
    ∴△ABC为等腰三角形.
    船从A到B以每小时30海里的速度走了2小时,
    ∴AB=BC=60海里.
    故答案选A.
    点评: 考查了等腰三角形的判定与性质,本题可用直角三角形性质解,但用等腰三角形更为简单,可根据自己情况灵活选择.

    8.(2014秋•南长区期末)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有( )个.
    A.①②③B.①②④C.①③④D.①②③④
    考点: 等腰三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质.
    分析: ①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;
    ②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;
    ③首先证明∴△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.
    ④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.
    解答: 解:连接OB,
    ∵AB=AC,AD⊥BC,
    ∴BD=CD,∠BAD=∠BAC=×120°=60°,
    ∴OB=OC,∠ABC=90°﹣∠BAD=30°,
    ∵OP=OC,
    ∴OB=OC=OP,
    ∴∠APO=∠ABO,∠DCO=∠DBO,
    ∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
    故①正确;
    ∵∠APC+∠DCP+∠PBC=180°,
    ∴∠APC+∠DCP=150°,
    ∵∠APO+∠DCO=30°,
    ∴∠OPC+∠OCP=120°,
    ∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
    ∵OP=OC,
    ∴△OPC是等边三角形;
    故②正确;
    在AC上截取AE=PA,
    ∵∠PAE=180°﹣∠BAC=60°,
    ∴△APE是等边三角形,
    ∴∠PEA=∠APE=60°,PE=PA,
    ∴∠APO+∠OPE=60°,
    ∵∠OPE+∠CPE=∠CPO=60°,
    ∴∠APO=∠CPE,
    ∵OP=CP,
    在△OPA和△CPE中,

    ∴△OPA≌△CPE(SAS),
    ∴AO=CE,
    ∴AC=AE+CE=AO+AP;
    故③正确;
    过点C作CH⊥AB于H,
    ∵∠PAC=∠DAC=60°,AD⊥BC,
    ∴CH=CD,
    ∴S△ABC=AB•CH,
    S四边形AOCP=S△ACP+S△AOC=AP•CH+OA•CD=AP•CH+OA•CH=CH•(AP+OA)=CH•AC,
    ∴S△ABC=S四边形AOCP;
    故④正确.
    故选D.
    点评: 本题考查了等腰 三角形的判定与性质,关键是正确作出辅助线.

    二.填空题
    9.(2015春•邳州市期末)在△ABC中,∠A=100°,当∠B= 40 °时,△ABC是等腰三角形.

    10.(2015春•盐城校级月考)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm.动点D从点A出发,以每秒1cm的速度沿射线AC运动,当t= 5、6、 时,△ABD为等腰三角形.
    考点: 等腰三角形的判定;勾股定理.
    专题: 分类讨论.
    分析: 根据勾股定理求出AC,分为三种情况:①若AB=AD,②若BA=BD,则AD=2AC,③若DA=DB,求出即可.
    解答: 解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,
    由运动可知:AD=t,且△ABD时等腰三角形,
    有三种情况:
    ①若AB=AD,则t=5;
    ②若BA=BD,则AD=2AC,即t=6;
    ③若DA=DB,则在Rt△BCD中,CD=t﹣3,BC=4,BD=t,
    即(t﹣3)2+42=t2,
    解得:t=,
    综合上述:符合要求的t值有3个,分别为5,6,.
    点评: 本题考查了等腰三角形的判定,勾股定理,运用分类讨论思想是本题的关键.

    11.(2015•甘肃模拟)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形): ①③ .
    考点: 等腰三角形的判定;全等三角形的判定与性质.
    专题: 证明题;开放型.
    分析: 根据已知条件求证△EBO≌△DCO,然后可得∠OBC=∠OCB再利用两角相等即可判定△ABC是等腰三角形.此题答案不唯一.
    解答: 答:由①③条件可判定△ABC是等腰三角形.
    证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)
    BE=CD,
    ∴△EBO≌△DCO,
    ∴OB=OC,
    ∴∠OBC=∠OCB,
    ∴∠ABC=∠ACB,
    ∴△ABC是等腰三角形.
    点评: 此题主要考查学生对等腰三角形的判定和全等三角形的判定与性质的理解和掌握,难度不大,是一道基础题.

    12.(2015•乳山市一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= 4 m2.
    考点: 等腰三角形的判定与性质;三角形的面积.
    分析: 延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.
    解答: 解:如图,延长BD交AC于点E,
    ∵AD平分∠BAE,AD⊥BD,
    ∴∠BAD=∠EAD,∠ADB=∠ADE,
    在△ABD和△AED中,

    ∴△ABD≌△AED(ASA),
    ∴BD=DE,
    ∴S△ABD=S△ADE,S△BDC=S△CDE,
    ∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,
    ∴S△ADC═S△ABC=×8=4(m2),
    故答案为:4.
    点评: 本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.

    13.(2013秋•兴化市期末)如图,已知△ABC中,AC+BC=16,AO、BO分别是∠CAB、∠ABC的角平分线.MN经过点O,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为 16 .
    考点: 等腰三角形的判定与性质;平行线的性质.
    分析: 根据AO、BO分别是角平分线和MN∥BA,求证△AON和△BOM为等腰三角形,再根据AC+BC=16,利用等量代换即可求出△CMN的周长.
    解答: 解:AO、BO分别是角平分线,
    ∴∠OAN=∠BAO,∠ABO=∠OBM,
    ∵MN∥BA,
    ∴∠AON=∠BAO,∠MOB=∠ABO,
    ∴AN=ON,BM=OM,即△AON和△BOM为等腰三角形,
    ∵MN=MO+ON,AC+BC=16,
    ∴△CMN的周长=MN+MC+NC=AC+BC=16.
    故答案为:16.
    点评: 此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证△AON和△BOM为等腰三角形.

    三.解答题
    14.(2015春•揭西县校级月考)如图所示,D为△ABC的边AB的延长线上一点,过D作DF⊥AC,垂足为F,交BC于E,且BD=BE,求证:△ABC是等腰三角形.
    考点: 等腰三角形的判定.
    专题: 证明题.
    分析: 先根据BD=BE得出∠D=∠BED,再利用对顶角相等和等角的余角相等证明即可.
    解答: 证明:∵BD=BE,
    ∴∠D=∠BED,
    ∵∠BED=∠CEF,
    ∴∠D=∠CEF,
    ∵DF⊥AC,
    ∴∠A+∠D=90°,∠CEF+∠C=90°,
    ∴∠A=∠C,
    ∴AB=BC,
    ∴△ABC是等腰三角形.
    点评: 此题考查等腰三角形的判定,关键是根据对顶角相等和等角的余角相等进行分析.

    15.(2015春•山亭区期末)如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.
    (1)求∠B的度数,并判断△ABC的形状;
    (2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.
    考点: 等腰三角形的判定与性质;平行线的性质.
    分析: (1)根据三角形内角和定理求得∠CAD=70°,根据平行线的性质求得∠C=∠CAD=70°,即可求得∠B的度数,根据等角对等边求得△ABC是等腰三角形;
    (2)根据等腰三角形三线合一的性质即可证得;
    解答: 解:(1)∵DE⊥AC于点E,∠D=20°,
    ∴∠CAD=70°,
    ∵AD∥BC,
    ∴∠C=∠CAD=70°,
    ∵∠BAC=70°,
    ∴∠B=40°,AB=AC,
    ∴△ABC是等腰三角形;
    (2)∵延长线段DE恰好过点B,DE⊥AC,
    ∴BD⊥AC,
    ∵△ABC是等腰三角形,
    ∴DB是∠ABC的平分线.
    点评: 本题考查了等腰三角形的判定和性质,平行线的性质,三角形的内角和定理,熟练掌握和应用这些性质和定理是本题的关键.

    16.(2015秋•德州校级月考)如图,在△ABC中,CE、CF分别平分∠ACB和△ACB的外角∠ACG,EF∥BC交AC于点D,求证:DE=DF.
    考点: 等腰三角形的判定与性质;平行线的性质.
    专题: 证明题.
    分析: 利用平行线及角平分线的性质先求得CD=ED,CD=DF,然后等量代换即可证明DE=DF.
    解答: 证明:∵CE是△ABC的角平分线,
    ∴∠ACE=∠BCE.
    ∵CF为外角∠ACG的平分线,
    ∴∠ACF=∠GCF.
    ∵EF∥BC,
    ∴∠GCF=∠F,∠BCE=∠CEF.
    ∴∠ACE=∠CEF,∠F=∠DCF.
    ∴CD=ED,CD=DF(等角对等边).
    ∴DE=DF.
    点评: 本题考查了等腰三角形的判定及角平分线的性质和平行线的性质;进行等量代换是正确解答本题的关键.

    17.(2014秋•金华期中)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
    (1)出发2秒后,求△ABP的周长.
    (2)问t为何值时,△BCP为等腰三角形?
    (3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
    考点: 等腰三角形的判定;一次函数综合题.
    分析: (1)利用勾股定理AC=8cm和PB=2cm,所以求出了三角形的周长.
    (2)利用分类讨论的思想和等腰三角形的特点及三角形的面积求出答案.
    (3)利用分类讨论的思想和周长的定义求出了答案.
    解答:

    解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm
    ∴出发2秒后,则CP=2cm,那么AP=6cm.
    ∵∠C=90°,
    ∴有勾股定理得PB=2cm
    ∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;
    (2)若P在边AC上时,BC=CP=6cm,
    此时用的时间为6s,△BCP为等腰三角形;
    若P在AB边上时,有两种情况:
    ①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,
    所以用的时间为12s,故t=12s时△BCP为等腰三角形;
    ②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,
    根据勾股定理求得BP=7.2cm,
    所以P运动的路程为18﹣7.2=10.8cm,
    ∴t的时间为10.8s,△BCP为等腰三角形;
    ③若BP=CP时,则∠PCB=∠PBC,
    ∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC
    ∴PA=PB=5cm
    ∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
    ∴t=6s或13s或12s或 10.8s 时△BCP为等腰三角形;

    相关试卷

    人教版八年级上册13.3.1 等腰三角形同步训练题:

    这是一份人教版八年级上册13.3.1 等腰三角形同步训练题,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中人教版15.3 分式方程练习:

    这是一份初中人教版15.3 分式方程练习,共17页。试卷主要包含了5倍.,8x+1等内容,欢迎下载使用。

    初中数学人教版八年级上册14.2.2 完全平方公式习题:

    这是一份初中数学人教版八年级上册14.2.2 完全平方公式习题,共13页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map