年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    北京市房山区名校2021-2022学年中考三模数学试题含解析

    北京市房山区名校2021-2022学年中考三模数学试题含解析第1页
    北京市房山区名校2021-2022学年中考三模数学试题含解析第2页
    北京市房山区名校2021-2022学年中考三模数学试题含解析第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市房山区名校2021-2022学年中考三模数学试题含解析

    展开

    这是一份北京市房山区名校2021-2022学年中考三模数学试题含解析,共29页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.函数在同一直角坐标系内的图象大致是(  )
    A. B. C. D.
    2.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    3.某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价( )元.
    A.3 B.2.5 C.2 D.5
    4.下列式子成立的有( )个
    ①﹣的倒数是﹣2
    ②(﹣2a2)3=﹣8a5
    ③()=﹣2
    ④方程x2﹣3x+1=0有两个不等的实数根
    A.1 B.2 C.3 D.4
    5.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )

    A.10 B.9 C.8 D.7
    6.在△ABC中,∠C=90°,,那么∠B的度数为( )
    A.60° B.45° C.30° D.30°或60°
    7.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是(  )
    A. B.
    C. D.
    8.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )
    A. B.
    C. D.
    9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3bn(an+b)(n≠1),其中正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    10.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )
    A. B. C. D.
    11.下列计算正确的是(  )
    A.﹣= B. =±2
    C.a6÷a2=a3 D.(﹣a2)3=﹣a6
    12.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算tan260°﹣2sin30°﹣cos45°的结果为_____.
    14.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.

    15.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.

    16.已知:正方形 ABCD.
    求作:正方形 ABCD 的外接圆.
    作法:如图,
    (1)分别连接 AC,BD,交于点 O;
    (2)以点 O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.
    请回答:该作图的依据是__________________________________.

    17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.

    18.计算:﹣1﹣2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)下面是一位同学的一道作图题:
    已知线段a、b、c(如图),求作线段x,使

    他的作法如下:
    (1)以点O为端点画射线,.
    (2)在上依次截取,.
    (3)在上截取.
    (4)联结,过点B作,交于点D.
    所以:线段________就是所求的线段x.
    ①试将结论补完整
    ②这位同学作图的依据是________
    ③如果,,,试用向量表示向量.
    20.(6分)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
    求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中
    ①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
    ②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
    21.(6分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点
    (1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;
    (2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值
    (3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由

    22.(8分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.
    (1)求证:△ADC≌△FDB;
    (2)求证:
    (3)判断△ECG的形状,并证明你的结论.

    23.(8分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

    C
    D
    总计/t
    A


    200
    B
    x

    300
    总计/t
    240
    260
    500
    (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
    总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
    24.(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
    年龄组x
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    男生平均身高y
    115.2
    118.3
    122.2
    126.5
    129.6
    135.6
    140.4
    146.1
    154.8
    162.9
    168.2
    (1)该市男学生的平均身高从   岁开始增加特别迅速.
    (2)求直线AB所对应的函数表达式.
    (3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?

    25.(10分)先化简,再在1,2,3中选取一个适当的数代入求值.
    26.(12分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
    求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.
    27.(12分)如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
    ①当n=1时,判断线段PM与PN的数量关系,并说明理由;
    ②若PN≥PM,结合函数的图象,直接写出n的取值范围.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
    【详解】
    当a>0时,二次函数的图象开口向上,
    一次函数的图象经过一、三或一、二、三或一、三、四象限,
    故A、D不正确;
    由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,
    但B中,一次函数a>0,b>0,排除B.
    故选C.
    2、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    3、A
    【解析】
    设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.
    【详解】
    解:设售价为x元时,每星期盈利为6120元,
    由题意得(x-40)[300+20(60-x)]=6120,
    解得:x1=57,x2=1,
    由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.
    ∴每件商品应降价60-57=3元.
    故选:A.
    【点睛】
    本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
    4、B
    【解析】
    根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.
    【详解】
    解:①﹣的倒数是﹣2,故正确;
    ②(﹣2a2)3=﹣8a6,故错误;
    ③(-)=﹣2,故错误;
    ④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.
    故选B.
    【点睛】
    考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.
    5、D
    【解析】
    分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.
    详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.
    故选D.

    点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.
    6、C
    【解析】
    根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
    【详解】
    解:∵,
    ∴∠A=60°.
    ∵∠C=90°,
    ∴∠B=90°-60°=30°.
    点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
    7、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
    8、B
    【解析】
    分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.
    详解:设早上葡萄的价格是 x 元/千克,由题意得,
    .
    故选B.
    点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.
    9、B
    【解析】
    ①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
    【详解】
    ①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
    ②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
    ③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
    ④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
    ⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
    ∴③④⑤正确.
    故选B.
    【点睛】
    本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
    10、B
    【解析】
    画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.
    解:画树状图为:

    共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,
    所以恰好抽到1班和2班的概率=.
    故选B.
    11、D
    【解析】
    根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.
    【详解】
    A. 不是同类二次根式,不能合并,故A选项错误;
    B.=2≠±2,故B选项错误;
    C. a6÷a2=a4≠a3,故C选项错误;
    D. (−a2)3=−a6,故D选项正确.
    故选D.
    【点睛】
    本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.
    12、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    分别算三角函数,再化简即可.
    【详解】
    解:原式=-2×-×
    =1.
    【点睛】
    本题考查掌握简单三角函数值,较基础.
    14、5
    【解析】
    作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
    【详解】
    解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,

    设CM=a,
    ∵AB=AC,
    ∴BC=2CM=2a,
    ∵tan∠ACB=2,
    ∴=2,
    ∴AM=2a,
    由勾股定理得:AC=a,
    S△BDC=BC•DH=10,
    •2a•DH=10,
    DH=,
    ∵∠DHM=∠HMG=∠MGD=90°,
    ∴四边形DHMG为矩形,
    ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
    ∵∠ADC=90°=∠ADG+∠CDG,
    ∴∠ADG=∠CDH,
    在△ADG和△CDH中,
    ∵,
    ∴△ADG≌△CDH(AAS),
    ∴DG=DH=MG=,AG=CH=a+,
    ∴AM=AG+MG,
    即2a=a++,
    a2=20,
    在Rt△ADC中,AD2+CD2=AC2,
    ∵AD=CD,
    ∴2AD2=5a2=100,
    ∴AD=5或−5(舍),
    故答案为5.
    【点睛】
    本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
    15、或
    【解析】
    分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
    详解:分两种情况:
    ①如图,当∠CDM=90°时,△CDM是直角三角形,

    ∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
    ∴∠C=30°,AB=AC=+2,
    由折叠可得,∠MDN=∠A=60°,
    ∴∠BDN=30°,
    ∴BN=DN=AN,
    ∴BN=AB=,
    ∴AN=2BN=,
    ∵∠DNB=60°,
    ∴∠ANM=∠DNM=60°,
    ∴∠AMN=60°,
    ∴AN=MN=;
    ②如图,当∠CMD=90°时,△CDM是直角三角形,

    由题可得,∠CDM=60°,∠A=∠MDN=60°,
    ∴∠BDN=60°,∠BND=30°,
    ∴BD=DN=AN,BN=BD,
    又∵AB=+2,
    ∴AN=2,BN=,
    过N作NH⊥AM于H,则∠ANH=30°,
    ∴AH=AN=1,HN=,
    由折叠可得,∠AMN=∠DMN=45°,
    ∴△MNH是等腰直角三角形,
    ∴HM=HN=,
    ∴MN=,
    故答案为:或.
    点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    16、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
    【解析】
    利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O 上,从而得到⊙O 为正方形的外接圆.
    【详解】
    ∵四边形 ABCD 为正方形,
    ∴OA=OB=OC=OD,
    ∴⊙O 为正方形的外接圆.
    故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    17、或1
    【解析】
    图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
    图2,当∠MB’C=90°,∠A=90°,AB=AC,
    ∠C=45°,
    所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
    所以BM=1.


    【详解】
    请在此输入详解!
    18、-3
    【解析】
    -1-2=-1+(-2)=-(1+2)=-3,
    故答案为-3.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
    【解析】
    ①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
    【详解】
    ①∵,
    ∴OA:AB=OC:CD,
    ∵,,,,
    ∴线段就是所求的线段x,
    故答案为:
    ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    ③∵、,且,
    ∴,
    ∴,即,
    ∴,
    ∴.
    【点睛】
    本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.
    20、(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.
    【解析】
    (1)易得△ABC是等腰直角三角形,从而∠BAC=∠CBA=45°;
    (2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;
    (3)①先说明四边形OHEF是正方形,再利用△DOH∽△DFE求出EF的长,然后利用割补法求面积;
    ②根据△EPC∽△EBA可求PC=4,根据△PDC∽△PCA可求PD •PA=PC2=16,再根据S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.
    【详解】
    (1)解:(1)连接BC,
    ∵AB是直径,
    ∴∠ACB=90°.
    ∴△ABC是等腰直角三角形,
    ∴∠BAC=∠CBA=45°;
    (2)解:∵,
    ∴∠CDB=∠CDP=45°,CB= CA,
    ∴CD平分∠BDP
    又∵CD⊥BP,
    ∴BE=EP,
    即CD是PB的中垂线,
    ∴CP=CB= CA,
    (3)① (Ⅰ)如图2,当 B在PA的中垂线上,且P在右时,∠ACD=15°;
    (Ⅱ)如图3,当B在PA的中垂线上,且P在左,∠ACD=105°;
    (Ⅲ)如图4,A在PB的中垂线上,且P在右时∠ACD=60°;
    (Ⅳ)如图5,A在PB的中垂线上,且P在左时∠ACD=120°
    ②(Ⅰ)如图6, ,



    .
    (Ⅱ)如图7, ,
    ,
    .

    .
    ,
    ,
    ,
    .
    设BD=9k,PD=2k,
    ,
    ,
    ,
    .


    【点睛】
    本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.
    21、 (1);6;(2)有最小值;(3),.
    【解析】
    (1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直角三角形求出点D的坐标即可求出BD;
    (2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证.
    (3)求出线段AC,BC进而判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P.
    【详解】
    解:(1) 对于直线y=x-3,令x=0,
    ∴y=-3,
    ∴B(0,-3),
    令y=0,
    ∴x-3=0,
    ∴x=4,
    ∴C(4,0),
    ∵抛物线y=x2+bx+c过B,C两点,


    ∴抛物线的解析式为y=;
    令y=0,
    ∴=0,
    ∴x=4或x=-1,
    ∴A(-1,0),
    ∴AC=5,
    如图2,记半圆的圆心为O',连接O'D,

    ∴O'A=O'D=O'C=AC=,
    ∴OO'=OC-O'C=4-=,
    在Rt△O'OD中,OD==2,
    ∴D(0,2),
    ∴BD=2-(-3)=5;
    (2) 如图3,

    ∵A(-1,0),C(4,0),
    ∴AC=5,
    过点E作EG∥BC交x轴于G,
    ∵△ABF的AF边上的高和△BEF的EF边的高相等,设高为h,
    ∴S△ABF=AF•h,S△BEF=EF•h,
    ∴==
    ∵的最小值,
    ∴最小,
    ∵CF∥GE,

    ∴最小,即:CG最大,
    ∴EG和果圆的抛物线部分只有一个交点时,CG最大,
    ∵直线BC的解析式为y=x-3,
    设直线EG的解析式为y=x+m①,
    ∵抛物线的解析式为y=x2-x-3②,
    联立①②化简得,3x2-12x-12-4m=0,
    ∴△=144+4×3×(12+4m)=0,
    ∴m=-6,
    ∴直线EG的解析式为y=x-6,
    令y=0,
    ∴x-6=0,
    ∴x=8,
    ∴CG=4,
    ∴=;
    (3),.理由:

    如图1,∵AC是半圆的直径,
    ∴半圆上除点A,C外任意一点Q,都有∠AQC=90°,
    ∴点P只能在抛物线部分上,
    ∵B(0,-3),C(4,0),
    ∴BC=5,
    ∵AC=5,
    ∴AC=BC,
    ∴∠BAC=∠ABC,
    当∠APC=∠CAB时,点P和点B重合,即:P(0,-3),
    由抛物线的对称性知,另一个点P的坐标为(3,-3),
    即:使∠APC=∠CAB,点P坐标为(0,-3)或(3,-3).
    【点睛】
    本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键.
    22、(1)详见解析;(2)详见解析;(3)详见解析.
    【解析】
    (1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;
    (2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;
    (3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.
    【详解】
    解:(1)∵AB=BC,BE平分∠ABC
    ∴BE⊥AC
    ∵CD⊥AB
    ∴∠ACD=∠ABE(同角的余角相等)
    又∵CD=BD
    ∴△ADC≌△FDB
    (2)∵AB=BC,BE平分∠ABC
    ∴AE=CE
    则CE=AC
    由(1)知:△ADC≌△FDB
    ∴AC=BF
    ∴CE=BF
    (3)△ECG为等腰直角三角形,理由如下:
    由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,
    则∠EGC=2∠CBG=∠ABC=45°,
    又∵BE⊥AC,
    故△ECG为等腰直角三角形.
    【点睛】
    本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.
    23、(1)见解析;(2)w=2x+9200,方案见解析;(3)0

    相关试卷

    2023年北京市房山区中考数学一模试卷(含解析):

    这是一份2023年北京市房山区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年北京市房山区中考数学专项提升仿真模拟卷(二模三模)含解析:

    这是一份2022-2023学年北京市房山区中考数学专项提升仿真模拟卷(二模三模)含解析

    2022-2023学年北京市房山区中考数学专项突破仿真模拟卷(二模三模)含解析:

    这是一份2022-2023学年北京市房山区中考数学专项突破仿真模拟卷(二模三模)含解析

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map