终身会员
搜索
    上传资料 赚现金
    北京市密云县2022年中考数学押题试卷含解析
    立即下载
    加入资料篮
    北京市密云县2022年中考数学押题试卷含解析01
    北京市密云县2022年中考数学押题试卷含解析02
    北京市密云县2022年中考数学押题试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市密云县2022年中考数学押题试卷含解析

    展开
    这是一份北京市密云县2022年中考数学押题试卷含解析,共22页。试卷主要包含了实数4的倒数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )
    A. B.
    C. D.
    2.一个几何体的三视图如图所示,则该几何体的表面积是(  )

    A.24+2π B.16+4π C.16+8π D.16+12π
    3.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是(  )
    A.﹣2.5 B.﹣0.6 C.+0.7 D.+5
    4.实数4的倒数是(  )
    A.4 B. C.﹣4 D.﹣
    5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是(  )

    A. B. C. D.
    6.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    7.某几何体的左视图如图所示,则该几何体不可能是(  )

    A. B. C. D.
    8.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( )
    A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)
    9.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为( )

    A.32° B.30° C.26° D.13°
    10.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为(  )
    A.60 B.30 C.240 D.120
    11.下列计算正确的是(  )
    A.(a)=a B.a+a=a
    C.(3a)•(2a)=6a D.3a﹣a=3
    12.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.
    A.3 B.4 C.5 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.不等式组的解是____.
    14.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.

    15.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.

    16.满足的整数x的值是_____.
    17.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=_____°.

    18.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?

    20.(6分)先化简分式: (-)÷∙,再从-3、-3、2、-2
    中选一个你喜欢的数作为的值代入求值.
    21.(6分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
    (1)函数的自变量x的取值范围是   ;
    (2)列出y与x的几组对应值.请直接写出m的值,m=   ;
    (3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
    (4)结合函数的图象,写出函数的一条性质.


    22.(8分)计算:.化简:.
    23.(8分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=和x=﹣时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.

    24.(10分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
    (1)求m,n的值;
    (2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.

    25.(10分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:

    (1)这次参与调查的村民人数为   人;
    (2)请将条形统计图补充完整;
    (3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
    (4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
    26.(12分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    27.(12分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

    请根据以上信息回答:
    (1)本次参加抽样调查的居民有多少人?
    (2)将两幅不完整的图补充完整;
    (3)若居民区有8000人,请估计爱吃D粽的人数;
    (4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可.
    【详解】
    设原计划每天生产零件x个,则实际每天生产零件为1.5x个,
    由题意得,
    故选:A.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可.
    2、D
    【解析】
    根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
    【详解】
    该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,
    故选:D.
    【点睛】
    本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
    3、B
    【解析】
    求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
    【详解】
    解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
    ∵5>3.5>2.5>0.7>0.6,
    ∴最接近标准的篮球的质量是-0.6,
    故选B.
    【点睛】
    本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
    4、B
    【解析】
    根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
    【详解】
    解:实数4的倒数是:
    1÷4=.
    故选:B.
    【点睛】
    此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
    5、B
    【解析】
    试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.
    考点:简单组合体的三视图.
    6、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    7、D
    【解析】
    解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
    故选D.
    【点睛】
    本题考查几何体的三视图.
    8、A
    【解析】
    首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.
    【详解】
    作图如下,

    ∵∠MPO+∠POM=90°,∠QON+∠POM=90°,
    ∴∠MPO=∠QON,
    在△PMO和△ONQ中,
    ∵ ,
    ∴△PMO≌△ONQ,
    ∴PM=ON,OM=QN,
    ∵P点坐标为(﹣4,2),
    ∴Q点坐标为(2,4),
    故选A.
    【点睛】
    此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.
    9、A
    【解析】
    连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.
    【详解】
    连接OB,
    ∵AB与☉O相切于点B,
    ∴∠OBA=90°,
    ∵∠A=26°,
    ∴∠AOB=90°-26°=64°,
    ∵OB=OC,
    ∴∠C=∠OBC,
    ∴∠AOB=∠C+∠OBC=2∠C,
    ∴∠C=32°.

    故选A.
    【点睛】
    本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.
    10、D
    【解析】
    由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
    【详解】
    如图所示,

    由tanA=,
    设BC=12x,AC=5x,根据勾股定理得:AB=13x,
    由题意得:12x+5x+13x=60,
    解得:x=2,
    ∴BC=24,AC=10,
    则△ABC面积为120,
    故选D.
    【点睛】
    此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.
    11、A
    【解析】
    根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
    【详解】
    A.(a2)3=a2×3=a6,故本选项正确;
    B.a2+a2=2a2,故本选项错误;
    C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
    D.3a﹣a=2a,故本选项错误.
    故选A.
    【点睛】
    本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
    12、C
    【解析】
    解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,
    其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}
    和为2的只有1+1;
    和为3的有1+2;2+1;
    和为1的有1+3;2+2;3+1;
    和为5的有1+1;2+3;3+2;1+1;
    和为6的有2+1;1+2;
    和为7的有3+1;1+3;
    和为8的有1+1.
    故p(5)最大,故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】

    解不等式①,得x>1,
    解不等式②,得x≤1,
    所以不等式组的解集是1<x≤1,
    故答案是:1<x≤1.
    【点睛】
    考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    14、1
    【解析】
    先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.
    【详解】
    解:∵∠A+∠C=180°,
    ∴AB∥CD,
    ∴∠APM=∠CQM=118°,
    ∴∠CQN=180°-∠CQM=1°,
    故答案为:1.
    【点睛】
    本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
    15、
    【解析】
    根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.
    【详解】
    由图可得,∠BAC=∠BDC,
    ∵⊙O在边长为1的网格格点上,
    ∴BE=3,DB=4,
    则tan∠BDC==
    ∴tan∠BAC=
    故答案为
    【点睛】
    本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.
    16、3,1
    【解析】
    直接得出2<<3,1<<5,进而得出答案.
    【详解】
    解:∵2<<3,1<<5,
    ∴的整数x的值是:3,1.
    故答案为:3,1.
    【点睛】
    此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
    17、45
    【解析】
    由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD的度数.
    【详解】
    ∵正方形ABCD,AF,AB,AD为圆A半径,
    ∴AB=AF=AD,∠ABD=∠ADB=45°,
    ∴∠ABF=∠AFB,∠AFD=∠ADF,
    ∵四边形ABFD内角和为360°,∠BAD=90°,
    ∴∠ABF+∠AFB+∠AFD+∠ADF=270°,
    ∴∠ABF+∠ADF=135°,
    ∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,
    ∴∠1+∠2=135°−90°=45°,
    ∵∠EFD为△DEF的外角,
    ∴∠EFD=∠1+∠2=45°.
    故答案为45
    【点睛】
    此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.
    18、
    【解析】
    如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
    【详解】
    解:如图,设AH=x,GB=y,

    ∵EH∥BC,


    ∵FG∥AC,


    由①②可得x=,y=2,
    ∴AC=,BC=7,
    ∴S△ABC=,
    故答案为.
    【点睛】
    本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、R= 或R=
    【解析】
    解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
    考点:圆与直线的位置关系.
    20、 ;5
    【解析】
    原式=(-)∙
    =∙
    =∙
    =
    a=2,原式=5
    21、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
    【解析】
    (1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
    (2)将y=代入函数解析式中求出x值即可;
    (2)描点、连线画出函数图象;
    (4)观察函数图象,写出函数的一条性质即可.
    【详解】
    解:(1)∵x+1≠0,∴x≠﹣1.
    故答案为x≠﹣1.
    (2)当y==时,解得:x=2.
    故答案为2.
    (2)描点、连线画出图象如图所示.
    (4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.

    【点睛】
    本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.
    22、(1)5;(2)-3x+4
    【解析】
    (1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
    (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
    【详解】
    (1)解:原式
    (2)解:原式
    【点睛】
    本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
    23、小亮说的对,理由见解析
    【解析】
    先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.
    【详解】
    2(x+1)2﹣(4x﹣5)
    =2x2+4x+2﹣4x+5,
    =2x2+7,
    当x=时,原式=+7=7;
    当x=﹣时,原式=+7=7.
    故小亮说的对.
    【点睛】
    本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.
    24、(1)m=8,n=-2;(2) 点F的坐标为,
    【解析】
    分析:(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b与x轴,y轴的交点分别为, . ②图中,当k>0时,设直线y=kx+b与x轴,y轴的交点分别为点,.
    详解:(1)如图②

    ∵ 点A的坐标为,点C与点A关于原点O对称,
    ∴ 点C的坐标为.
    ∵ AB⊥x轴于点B,CD⊥x轴于点D,
    ∴ B,D两点的坐标分别为,.
    ∵ △ABD的面积为8,,
    ∴ .
    解得 . ∵ 函数()的图象经过点,
    ∴ .
    (2)由(1)得点C的坐标为.
    ① 如图,当时,设直线与x轴,

    y轴的交点分别为点,.
    由 CD⊥x轴于点D可得CD∥.
    ∴ △CD∽△ O.
    ∴ .
    ∵ ,
    ∴ .
    ∴ .
    ∴ 点的坐标为.
    ②如图,当时,设直线与x轴,y轴的交点分别为
    点,.

    同理可得CD∥,.
    ∵ ,
    ∴ 为线段的中点,.
    ∴ .
    ∴ 点的坐标为.
    综上所述,点F的坐标为,.
    点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.
    25、 (1)120;(2)42人;(3) 90°;(4)
    【解析】
    (1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;
    (2)利用条形统计图以及样本数量得出喜欢广场舞的人数;
    (3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;
    (4)利用树状图法列举出所有的可能进而得出概率.
    【详解】
    (1)这次参与调查的村民人数为:24÷20%=120(人);
    故答案为:120;
    (2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),
    如图所示:

    (3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;
    (4)如图所示:

    一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,
    故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.
    【点睛】
    此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.
    26、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    27、(1)600(2)见解析
    (3)3200(4)
    【解析】
    (1)60÷10%=600(人).
    答:本次参加抽样调查的居民有600人.(2分)
    (2)如图;…(5分)

    (3)8000×40%=3200(人).
    答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)
    (4)如图;

    (列表方法略,参照给分).…(8分)
    P(C粽)==.
    答:他第二个吃到的恰好是C粽的概率是.…(10分)

    相关试卷

    北京市密云县名校2022年中考数学押题卷含解析: 这是一份北京市密云县名校2022年中考数学押题卷含解析,共19页。试卷主要包含了下列计算正确的是,方程x2﹣3x=0的根是等内容,欢迎下载使用。

    2022年北京市密云县市级名校中考联考数学试题含解析: 这是一份2022年北京市密云县市级名校中考联考数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的一元二次方程,这个数是等内容,欢迎下载使用。

    2022年北京市中考数学押题卷含解析: 这是一份2022年北京市中考数学押题卷含解析,共23页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map