北京市怀柔区达标名校2022年中考数学最后一模试卷含解析
展开
这是一份北京市怀柔区达标名校2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,,则的度数为,我市连续7天的最高气温为,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
2.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )
A.5 B.9 C.15 D.22
3.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )
A. B. C. D.
4.如图,,则的度数为( )
A.115° B.110° C.105° D.65°
5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
A.28°,30° B.30°,28° C.31°,30° D.30°,30°
6.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
A.3或6 B.1或6 C.1或3 D.4或6
7.下列计算正确的是( )
A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6
C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy
8.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是( )
A. B. C. D.
9.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )
A. B. C. D.
10.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为( )
A.﹣2 B.﹣1 C.1 D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.
12.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.
13.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.
14.因式分解:3x2-6xy+3y2=______.
15.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.
16.分解因式:3a2﹣12=___.
三、解答题(共8题,共72分)
17.(8分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
18.(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.
(1)求该抛物线的解析式;
(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
19.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.
20.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.
(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?
(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.
21.(8分)((1)计算:;
(2)先化简,再求值:
,其中a=.
22.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
(1)求∠DOA的度数;
(2)求证:直线ED与⊙O相切.
23.(12分)先化简,再求值:,其中m是方程的根.
24.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
2、B
【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
【详解】
课外书总人数:6÷25%=24(人),
看5册的人数:24﹣5﹣6﹣4=9(人),
故选B.
【点睛】
本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
3、A
【解析】
【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.
【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,
只有A选项符合题意,
故选A.
【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.
4、A
【解析】
根据对顶角相等求出∠CFB=65°,然后根据CD∥EB,判断出∠B=115°.
【详解】
∵∠AFD=65°,
∴∠CFB=65°,
∵CD∥EB,
∴∠B=180°−65°=115°,
故选:A.
【点睛】
本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.
5、D
【解析】
试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
30出现了3次,出现的次数最多,则众数是30;
故选D.
考点:众数;算术平均数.
6、B
【解析】
分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
详解:如图,
当h<2时,有-(2-h)2=-1,
解得:h1=1,h2=3(舍去);
当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
当h>5时,有-(5-h)2=-1,
解得:h3=4(舍去),h4=1.
综上所述:h的值为1或1.
故选B.
点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
7、D
【解析】
A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.
【详解】
A.-2x-2y3×2x3y=-4xy4,故本选项错误;
B. (−2a2)3=−8a6,故本项错误;
C. (2a+1)(2a−1)=4a2−1,故本项错误;
D.35x3y2÷5x2y=7xy,故本选项正确.
故答案选D.
【点睛】
本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.
8、A
【解析】
利用平行线的判定方法判断即可得到结果.
【详解】
∵∠1=∠2,
∴AB∥CD,选项A符合题意;
∵∠3=∠4,
∴AD∥BC,选项B不合题意;
∵∠D=∠5,
∴AD∥BC,选项C不合题意;
∵∠B+∠BAD=180°,
∴AD∥BC,选项D不合题意,
故选A.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
9、A
【解析】
由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
故选A.
点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
10、C
【解析】
根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
【详解】
∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
∴设旋转后的函数解析式为y=﹣x﹣1,
在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
即一次函数y=﹣x+2与x轴交点为(4,1).
一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
∴m==1,
故选:C.
【点睛】
本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
如图,有5种不同取法;故概率为 .
12、1.
【解析】
先由多边形的内角和和外角和的关系判断出多边形的边数,即可得到结论.
【详解】
设多边形的边数为n.
因为正多边形内角和为 ,正多边形外角和为
根据题意得:
解得:n=8.
∴这个正多边形的每个外角
则这个正多边形的每个内角是
故答案为:1.
【点睛】
考查多边形的内角和与外角和,熟练掌握多边形内角和公式是解题的关键.
13、2
【解析】
过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=3,求得DF=BF−BD=,根据勾股定理即可得到结论.
【详解】
解:过点E作EF⊥BC于F,
∴∠BFE=90°,
∵∠BAC=90°,AB=AC=4,
∴∠B=∠C=45°,BC=4,
∴△BEF是等腰直角三角形,
∵BE=AB+AE=6,
∴BF=EF=3,
∵D是BC的中点,
∴BD=2,
∴DF=BF−BD,
∴DE===2.
故答案为2.
【点睛】
本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.
14、3(x﹣y)1
【解析】
试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.
考点:提公因式法与公式法的综合运用
15、1.
【解析】
连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
【详解】
解:连接AF,
∵E是CD的中点,
∴CE=,AB=2,
∵FC=2BF,AD=3,
∴BF=1,CF=2,
∴BF=CE,FC=AB,
∵∠B=∠C=90°,
∴△ABF≌△FCE,
∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
∴∠AFE=90°,
∴△AFE是等腰直角三角形,
∴∠AEF=45°,
∴tan∠AEF=1.
故答案为:1.
【点睛】
本题结合三角形全等考查了三角函数的知识.
16、3(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
三、解答题(共8题,共72分)
17、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
【解析】
(1)根据题意应用分式方程即可;
(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
【详解】
(1)设型丝绸的进价为元,则型丝绸的进价为元,
根据题意得:,
解得,
经检验,为原方程的解,
,
答:一件型、型丝绸的进价分别为500元,400元.
(2)①根据题意得:
,
的取值范围为:,
②设销售这批丝绸的利润为,
根据题意得:
,
,
(Ⅰ)当时,,
时,
销售这批丝绸的最大利润;
(Ⅱ)当时,,
销售这批丝绸的最大利润;
(Ⅲ)当时,
当时,
销售这批丝绸的最大利润.
综上所述:.
【点睛】
本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
18、(1);(2);(3)或.
【解析】
(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
【详解】
(1)抛物线的图象经过,,,
把,,代入得:
解得:,
抛物线解析式为;
(2)抛物线改写成顶点式为,
抛物线对称轴为直线,
∴对称轴与轴的交点C的坐标为
,
,
设点B的坐标为,,
则,
,
∴
∴点B的坐标为,
设直线解析式为:,
把,代入得:,
解得:,
直线解析式为:.
(3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点F,与x轴相切于点C,如图1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,);
②设⊙P与AB相切于点F,与轴相切于点C,如图2:
∴PF⊥AB,PF=PC,
∵AC=3,BC=4, AB=5,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,-6),
综上所述,与直线和都相切时,
或.
【点睛】
本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
19、作图见解析;CE=4.
【解析】
分析:利用数形结合的思想解决问题即可.
详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.
点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.
20、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
【解析】
(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
【详解】
解析:(1)设购买A种花木x棵,B种花木y棵,
根据题意,得:,解得:,
答:购买A种花木40棵,B种花木60棵;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,
根据题意,得:100﹣a≥a,解得:a≤50,
设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,
∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,
答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
考点:一元一次不等式的应用;二元一次方程组的应用.
21、(1)2016;(2)a(a﹣2),.
【解析】
试题分析:(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;
(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可.
试题解析:(1)原式==2016;
(2)原式====a(a﹣2),
当a=时,原式==.
22、(1)∠DOA =100°;(2)证明见解析.
【解析】
试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA的度数;(2)连接OE,利用SSS证明△EAO≌△EDO,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED与⊙O相切.
试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;
(2)证明:连接OE,
在△EAO和△EDO中,
AO=DO,EA=ED,EO=EO,
∴△EAO≌△EDO,
得到∠EDO=∠EAO=90°,
∴直线ED与⊙O相切.
考点:圆周角定理;全等三角形的判定及性质;切线的判定定理
23、原式=.
∵m是方程的根.∴,即,∴原式=.
【解析】
试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.
试题解析:原式=.
∵m是方程的根.∴,即,∴原式=.
考点:分式的化简求值;一元二次方程的解.
24、(1)2;(2)宣传牌CD高(20﹣1)m.
【解析】
试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;
(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.
试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.
答:点B距水平面AE的高度BH是2米;
(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.
相关试卷
这是一份2022年北京市怀柔区达标名校中考数学猜题卷含解析,共29页。试卷主要包含了点P等内容,欢迎下载使用。
这是一份2022届金平区重点达标名校中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重等内容,欢迎下载使用。
这是一份2021-2022学年扬州市达标名校中考数学最后一模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法等内容,欢迎下载使用。