北京市东城区五十中学2021-2022学年中考数学全真模拟试题含解析
展开
这是一份北京市东城区五十中学2021-2022学年中考数学全真模拟试题含解析,共15页。
2021-2022中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.方程x2﹣4x+5=0根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根2.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )A.6 B.7 C.11 D.123.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A.90° B.180° C.210° D.270°4.若关于的一元二次方程的一个根是0,则的值是( )A.1 B.-1 C.1或-1 D.5.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q6.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和( )A.增加(n﹣2)×180° B.减小(n﹣2)×180°C.增加(n﹣1)×180° D.没有改变7.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A.π B. C.2π D.3π8.若关于x的方程 是一元二次方程,则m的取值范围是( )A.. B.. C. D..9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>010.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为( )A.31° B.32° C.59° D.62°二、填空题(共7小题,每小题3分,满分21分)11.分解因式:2a4﹣4a2+2=_____.12.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.B.用计算器计算:•tan63°27′≈_____(精确到0.01).13.已知二次函数f(x)=x2-3x+1,那么f(2)=_________.14.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示).15.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.16.2的平方根是_________.17.如果一个正多边形的中心角等于,那么这个正多边形的边数是__________.三、解答题(共7小题,满分69分)18.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.19.(5分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.20.(8分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;(2)解方程:x(x﹣4)=2x﹣821.(10分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.22.(10分)如图,,,,求证:。23.(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空_______,_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.①如下分数段整理样本等级等级分数段各组总分人数48435741712②根据上表绘制扇形统计图24.(14分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
解: ∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.2、C【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3、B【解析】
试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B4、B【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以 ,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.5、D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,
∴原点在点M与N之间,
∴这四个数中绝对值最大的数对应的点是点Q.
故选D.6、D【解析】
根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.7、D【解析】
根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= =3π. 故选D.【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.8、A【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.9、C【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.10、A【解析】
根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.【详解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°−118°,解得:∠B=31°,故选A.【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB. 二、填空题(共7小题,每小题3分,满分21分)11、1(a+1)1(a﹣1)1.【解析】
原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案为:1(a+1)1(a﹣1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.12、20 5.1 【解析】
A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有=20,故答案为20;B、•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.13、-1【解析】
根据二次函数的性质将x=2代入二次函数解析式中即可.【详解】 f(x)=x2-3x+1 f(2)= 22-32+1=-1.故答案为-1.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.14、(50-3a).【解析】试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50-3a)元.考点:列代数式.15、1.【解析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,1岁的有21人,∴这个班同学年龄的中位数是1岁.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.16、【解析】
直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【详解】解:2的平方根是故答案为.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17、12.【解析】
根据正n边形的中心角的度数为进行计算即可得到答案.【详解】解:根据正n边形的中心角的度数为,则n=360÷30=12,故这个正多边形的边数为12,故答案为:12.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键. 三、解答题(共7小题,满分69分)18、 (1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到,再根据圆周角与圆心角的关系,得知∠E=∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴,∴∠DEB=∠AOD=×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.19、(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.20、(1)3;(1)x1=4,x1=1.【解析】
(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(﹣)﹣4×+1=8×﹣1+1=3;(1)移项得:x(x﹣4)﹣1(x﹣4)=0,(x﹣4)(x﹣1)=0,x﹣4=0,x﹣1=0,x1=4,x1=1.【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.21、(30+30)米.【解析】
解:设建筑物AB的高度为x米在Rt△ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt△ABC 中,∠ACB=30°,∴tan∠ACB= ∴ ∴ ∴x=30+30 ∴建筑物AB的高度为(30+30)米22、见解析【解析】
据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【详解】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角23、(1)6;8;B;(2)120人;(3)113分.【解析】
(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
(2)根据表格中的数据可以求得D等级的人数;
(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:(人),
,
数学成绩的中位数所在的等级B,
故答案为:6,11,B;
(2)120(人),
答:D等级的约有120人;
(3)由表可得,
A等级学生的数学成绩的平均分数:(分),
即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.24、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt△,得到和Rt△中,由勾股定理即可得到结论; (3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.详解:(1)过点作⊥,垂足为点,连接.在Rt△,∴. ∵=6,∴. 由勾股定理得: .∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得: ,解得.(3)△成为等腰三角形可分以下几种情况:① 当圆心、在弦异侧时i),即,由,解得.即圆心距等于、的半径的和,就有、外切不合题意舍去.ii),由 ,解得:,即 ,解得.②当圆心、在弦同侧时,同理可得: .∵是钝角,∴只能是,即,解得.综上所述:n的值为或.点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
相关试卷
这是一份北京市重点中学2023届中考数学全真模拟试题含解析,共19页。
这是一份北京市延庆县名校2021-2022学年中考数学全真模拟试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若,代数式的值是,计算﹣2+3的结果是等内容,欢迎下载使用。
这是一份北京市东城区五十中学2022年中考五模数学试题含解析,共21页。