|试卷下载
终身会员
搜索
    上传资料 赚现金
    大同市重点中学2021-2022学年中考数学四模试卷含解析
    立即下载
    加入资料篮
    大同市重点中学2021-2022学年中考数学四模试卷含解析01
    大同市重点中学2021-2022学年中考数学四模试卷含解析02
    大同市重点中学2021-2022学年中考数学四模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    大同市重点中学2021-2022学年中考数学四模试卷含解析

    展开
    这是一份大同市重点中学2021-2022学年中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,计算x﹣2y﹣,下列四个式子中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是(  )

    A. B. C. D.
    2.在下列各平面图形中,是圆锥的表面展开图的是( )
    A. B. C. D.
    3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有(  )个.

    A.3 B.4 C.2 D.1
    4.若代数式有意义,则实数x的取值范围是( )
    A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
    5.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )

    A. B. C. D.
    6.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=(  )

    A.40° B.110° C.70° D.140°
    7.计算x﹣2y﹣(2x+y)的结果为(  )
    A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y
    8.下列四个式子中,正确的是(  )
    A. =±9 B.﹣ =6 C.()2=5 D.=4
    9.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有(  )

    A.1个 B.3个 C.4个 D.5个
    10.已知点,为是反比例函数上一点,当时,m的取值范围是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若一个多边形的内角和是900º,则这个多边形是 边形.
    12.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
    13.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.
    14.观察下列等式:
    第1个等式:a1=;
    第2个等式:a2=;
    第3个等式:a3=;

    请按以上规律解答下列问题:
    (1)列出第5个等式:a5=_____;
    (2)求a1+a2+a3+…+an=,那么n的值为_____.
    15.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.
    16.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.
    三、解答题(共8题,共72分)
    17.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.

    18.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.

    19.(8分)解分式方程:
    - =
    20.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=6,求阴影区域的面积.(结果保留根号和π)

    21.(8分)如图,在矩形ABCD中,E是BC边上的点,,垂足为F.

    (1)求证:;
    (2)如果,求的余切值.
    22.(10分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.

    (1)求点B距水平面AE的高度BH;
    (2)求广告牌CD的高度.
    23.(12分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.
    (1)求这条抛物线的表达式;
    (2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;
    (3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.

    24.如图,中,于,点分别是的中点.

    (1)求证:四边形是菱形
    (2)如果,求四边形的面积



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
    【详解】
    由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
    所以其主视图为:

    故选C.
    【点睛】
    考查了三视图的知识,主视图是从物体的正面看得到的视图.
    2、C
    【解析】
    结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.
    【详解】
    解:圆锥的展开图是由一个扇形和一个圆形组成的图形.
    故选C.
    【点睛】
    考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.
    3、A
    【解析】
    利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.
    【详解】
    ∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),
    ∴A(-3,0),
    ∴AB=1-(-3)=4,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2-4ac>0,所以②正确;
    ∵抛物线开口向下,
    ∴a>0,
    ∵抛物线的对称轴为直线x=-=-1,
    ∴b=2a>0,
    ∴ab>0,所以③错误;
    ∵x=-1时,y<0,
    ∴a-b+c<0,
    而a>0,
    ∴a(a-b+c)<0,所以④正确.
    故选A.
    【点睛】
    本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.
    4、D
    【解析】
    试题分析:∵代数式有意义,
    ∴,
    解得x≥0且x≠1.
    故选D.
    考点:二次根式,分式有意义的条件.
    5、B
    【解析】
    解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.

    点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
    6、B
    【解析】
    先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
    【详解】
    ∵AB∥CD,
    ∴∠ACD+∠BAC=180°,
    ∵∠ACD=40°,
    ∴∠BAC=180°﹣40°=140°,
    ∵AE平分∠CAB,
    ∴∠BAE=∠BAC=×140°=70°,
    ∴∠DEA=180°﹣∠BAE=110°,
    故选B.
    【点睛】
    本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
    7、C
    【解析】
    原式去括号合并同类项即可得到结果.
    【详解】
    原式,
    故选:C.
    【点睛】
    本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.
    8、D
    【解析】
    A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
    【详解】
    A、=9,故A错误;
    B、-=−=-6,故B错误;
    C、()2=2+2+3=5+2,故C错误;
    D、==4,故D正确.
    故选D.
    【点睛】
    本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
    9、D
    【解析】
    根据抛物线的图象与系数的关系即可求出答案.
    【详解】
    解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;
    令x=3,y>0,∴9a+3b+c>0,故②正确;
    ∵OA=OC<1,∴c>﹣1,故③正确;
    ∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.
    ∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;
    ∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,
    ∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,
    即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.
    故选D.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.
    10、A
    【解析】
    直接把n的值代入求出m的取值范围.
    【详解】
    解:∵点P(m,n),为是反比例函数y=-图象上一点,
    ∴当-1≤n<-1时,
    ∴n=-1时,m=1,n=-1时,m=1,
    则m的取值范围是:1≤m<1.
    故选A.
    【点睛】
    此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、七
    【解析】
    根据多边形的内角和公式,列式求解即可.
    【详解】
    设这个多边形是边形,根据题意得,

    解得.
    故答案为.
    【点睛】
    本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
    12、-1
    【解析】
    将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
    【详解】
    解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
    ∴a2-1=2,
    ∴a=±1,
    ∵a-1≠2,
    ∴a≠1,
    ∴a的值为-1.
    故答案为-1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.
    13、有两个不相等的实数根.
    【解析】
    分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.
    详解:∵a=2,b=3,c=−2,

    ∴一元二次方程有两个不相等的实数根.
    故答案为有两个不相等的实数根.
    点睛:考查一元二次方程根的判别式,
    当时,方程有两个不相等的实数根.
    当时,方程有两个相等的实数根.
    当时,方程没有实数根.
    14、 49
    【解析】
    (1)观察等式可得 然后根据此规律就可解决问题;
    (2)只需运用以上规律,采用拆项相消法即可解决问题.
    【详解】
    (1)观察等式,可得以下规律:,

    (2)

    解得:n=49.
    故答案为:49.
    【点睛】
    属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
    15、3.86×108
    【解析】
    根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:
    3.86亿=386000000=3.86×108.
    故答案是:3.86×108.
    16、
    【解析】
    首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
    【详解】
    画树状图如下:

    由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,
    所以两次都摸到红球的概率是,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.

    三、解答题(共8题,共72分)
    17、见解析
    【解析】
    试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
    试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
    考点:平行线的性质;全等三角形的判定及性质.
    18、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
    【解析】
    (1)解方程求出点A的坐标,根据勾股定理计算即可;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
    【详解】
    解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
    ∵点A位于点B的左侧,
    ∴A(﹣1,0),
    ∵直线y=x+m经过点A,
    ∴﹣1+m=0,
    解得,m=1,
    ∴点D的坐标为(0,1),
    ∴AD==1;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,
    y=x1+bx+1=(x+)1+1﹣,
    则点C′的坐标为(﹣,1﹣),
    ∵CC′平行于直线AD,且经过C(0,﹣4),
    ∴直线CC′的解析式为:y=x﹣4,
    ∴1﹣=﹣﹣4,
    解得,b1=﹣4,b1=6,
    ∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
    【点睛】
    本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.
    19、方程无解
    【解析】
    找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
    【详解】
    解:方程的两边同乘(x+1)(x−1),
    得:,


    ∴此方程无解
    【点睛】
    本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.
    20、(1)证明见解析 (2)﹣6π
    【解析】
    (1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;
    (2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.
    【详解】
    (1)证明:连接OD,
    ∵D为弧BC的中点,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠BAD=∠ADO,
    ∴∠CAD=∠ADO,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,
    ∴OD⊥EF,
    ∴EF为半圆O的切线;
    (2)解:连接OC与CD,
    ∵DA=DF,
    ∴∠BAD=∠F,
    ∴∠BAD=∠F=∠CAD,
    又∵∠BAD+∠CAD+∠F=90°,
    ∴∠F=30°,∠BAC=60°,
    ∵OC=OA,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,∠COB=120°,
    ∵OD⊥EF,∠F=30°,
    ∴∠DOF=60°,
    在Rt△ODF中,DF=6,
    ∴OD=DF•tan30°=6,
    在Rt△AED中,DA=6,∠CAD=30°,
    ∴DE=DA•sin30°=3,EA=DA•cos30°=9,
    ∵∠COD=180°﹣∠AOC﹣∠DOF=60°,
    由CO=DO,
    ∴△COD是等边三角形,
    ∴∠OCD=60°,
    ∴∠DCO=∠AOC=60°,
    ∴CD∥AB,
    故S△ACD=S△COD,
    ∴S阴影=S△AED﹣S扇形COD==.

    【点睛】
    此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S△ACD=S△COD是解题关键.
    21、(1)见解析;(2).
    【解析】
    (1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.
    【详解】
    解:(1)证明:四边形是矩形,


    在和中,



    (2),

    设,







    .

    【点睛】
    本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.
    22、 (1) BH为10米;(2) 宣传牌CD高约(40﹣20)米
    【解析】
    (1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
    (2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
    【详解】
    (1)过B作BH⊥AE于H,
    Rt△ABH中,∠BAH=30°,
    ∴BH=AB=×20=10(米),
    即点B距水平面AE的高度BH为10米;
    (2)过B作BG⊥DE于G,
    ∵BH⊥HE,GE⊥HE,BG⊥DE,
    ∴四边形BHEG是矩形.
    ∵由(1)得:BH=10,AH=10,
    ∴BG=AH+AE=(10+30)米,
    Rt△BGC中,∠CBG=45°,
    ∴CG=BG=(10+30)米,
    ∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
    在Rt△AED中,
    =tan∠DAE=tan60°=,
    DE=AE=30
    ∴CD=CE﹣DE=10+40﹣30=40﹣20.
    答:宣传牌CD高约(40﹣20)米.

    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.
    23、 (1) y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).
    【解析】
    (1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
    (2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;
    (3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.
    【详解】
    (1)过点A作AH⊥x轴于点H,

    ∵AO=OB=2,∠AOB=120°,
    ∴∠AOH=60°,
    ∴OH=1,AH=,
    ∴A点坐标为:(-1,),B点坐标为:(2,0),
    将两点代入y=ax2+bx得:

    解得:,
    ∴抛物线的表达式为:y=x2-x;
    (2)如图,

    ∵C(1,-),
    ∴tan∠EOC=,
    ∴∠EOC=30°,
    ∴∠POC=90°+30°=120°,
    ∵∠AOE=120°,
    ∴∠AOE=∠POC=120°,
    ∵OA=2OE,OC=,
    ∴当OP=OC或OP′=2OC时,△POC与△AOE相似,
    ∴OP=,OP′=,
    ∴点P坐标为(0,)或(0,).
    (3)如图,取Q(,0).连接AQ,QE′.


    ,∠QOE′=∠BOE′,
    ∴△OE′Q∽△OBE′,
    ∴,
    ∴E′Q=BE′,
    ∴AE′+BE′=AE′+QE′,
    ∵AE′+E′Q≥AQ,
    ∴E′A+E′B的最小值就是线段AQ的长,最小值为.
    【点睛】
    本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.
    24、 (1)证明见解析;(2).
    【解析】
    (1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
    (2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
    【详解】
    解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形;
    (2)如图,

    ∵AB=AC=BC=10,
    ∴EF=5,AD=5,
    ∴菱形AEDF的面积S=EF•AD=×5×5=.
    【点睛】
    本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.

    相关试卷

    贵港市重点中学2021-2022学年中考数学四模试卷含解析: 这是一份贵港市重点中学2021-2022学年中考数学四模试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,|–|的倒数是等内容,欢迎下载使用。

    包头市重点中学2021-2022学年中考数学四模试卷含解析: 这是一份包头市重点中学2021-2022学年中考数学四模试卷含解析,共19页。试卷主要包含了如图所示,在平面直角坐标系中A,下列运算结果正确的是,化简的结果是,下列计算中,错误的是等内容,欢迎下载使用。

    2021-2022学年镇江市重点中学中考数学四模试卷含解析: 这是一份2021-2022学年镇江市重点中学中考数学四模试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,﹣3的相反数是,计算±的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map