![福建省泉州泉港区四校联考2021-2022学年中考数学对点突破模拟试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13505088/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省泉州泉港区四校联考2021-2022学年中考数学对点突破模拟试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13505088/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省泉州泉港区四校联考2021-2022学年中考数学对点突破模拟试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13505088/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省泉州泉港区四校联考2021-2022学年中考数学对点突破模拟试卷含解析
展开
这是一份福建省泉州泉港区四校联考2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了不等式组的解集是,方程x等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为( )
A. B. C. D.
2.如果,那么的值为( )
A.1 B.2 C. D.
3.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
4.不等式组的解集是 ( )
A.x>-1 B.x>3
C.-1<x<3 D.x<3
5.到三角形三个顶点的距离相等的点是三角形( )的交点.
A.三个内角平分线 B.三边垂直平分线
C.三条中线 D.三条高
6.如图,以两条直线l1,l2的交点坐标为解的方程组是( )
A. B. C. D.
7.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
A. B. C. D.
8.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2
9.方程x(x-2)+x-2=0的两个根为( )
A., B.,
C. , D.,
10.一个圆锥的底面半径为,母线长为6,则此圆锥的侧面展开图的圆心角是( )
A.180° B.150° C.120° D.90°
11.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )
A.2.3 B.2.4 C.2.5 D.2.6
12.化简的结果是( )
A.﹣ B.﹣ C.﹣ D.﹣
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是 .
14.ABCD为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动,P、Q两点从出发开始到__________秒时,点P和点Q的距离是10 cm.
15.若正六边形的边长为2,则此正六边形的边心距为______.
16.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
17.在△ABC中,AB=13cm,AC=10cm,BC边上的高为11cm,则△ABC的面积为______cm1.
18.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
(1)如图,点D在线段CB上时,
①求证:△AEF≌△ADC;
②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
(2)当∠DAB=15°时,求△ADE的面积.
20.(6分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.
请你根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;
(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
21.(6分)计算:-2-2 - + 0
22.(8分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
23.(8分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
24.(10分)计算:(﹣1)2018﹣2+|1﹣|+3tan30°.
25.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
(1)本次被调查的学生的人数为 ;
(2)补全条形统计图
(3)扇形统计图中,类所在扇形的圆心角的度数为 ;
(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.
26.(12分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)
(2)(m﹣1﹣).
27.(12分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.
(1)求山西省的丘陵面积与平原面积;
(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
【详解】
解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
∴BD=5,
在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
∴BF2=32+(4-BF)2,
解得BF=,
∴AF=4-=.
过G作GH∥BF,交BD于H,
∴∠FBD=∠GHD,∠BGH=∠FBG,
∵FB=FD,
∴∠FBD=∠FDB,
∴∠FDB=∠GHD,
∴GH=GD,
∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
又∵∠FBG=∠BGH,∠FBG=∠GBH,
∴BH=GH,
设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
∵GH∥FB,
∴ =,即=,
解得x=.
故选A.
【点睛】
本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
2、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
3、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
4、B
【解析】
根据解不等式组的方法可以求得原不等式组的解集.
【详解】
,
解不等式①,得x>-1,
解不等式②,得x>1,
由①②可得,x>1,
故原不等式组的解集是x>1.
故选B.
【点睛】
本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
5、B
【解析】
试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.
解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选B.
点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
6、C
【解析】
两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.
【详解】
直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;
直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;
因此以两条直线l1,l2的交点坐标为解的方程组是:.
故选C.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
7、A
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.
故选:A.
【点睛】
本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
8、C
【解析】
解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
故选C.
9、C
【解析】
根据因式分解法,可得答案.
【详解】
解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故选:C.
【点睛】
本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.
10、B
【解析】
解:,解得n=150°.故选B.
考点:弧长的计算.
11、B
【解析】
试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
∴⊙C的半径为,故选B.
考点:圆的切线的性质;勾股定理.
12、C
【解析】
试题解析:原式=.
故选C.
考点:二次根式的乘除法.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(0,0)或(0,﹣8)或(﹣6,0)
【解析】
由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
【详解】
解:∵P(﹣3,﹣4)到原点距离为5,
而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
故答案是:(0,0)或(0,﹣8)或(﹣6,0).
14、或
【解析】
作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.
【详解】
设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
作PH⊥CD,垂足为H,
则PH=AD=6,PQ=10,
∵DH=PA=3t,CQ=2t,
∴HQ=CD−DH−CQ=|16−5t|,
由勾股定理,得
解得
即P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.
故答案为或.
【点睛】
考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键.
15、.
【解析】
连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
【详解】
连接OA、OB、OC、OD、OE、OF,
∵正六边形ABCDEF,
∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
∴△AOB是等边三角形,
∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
在△OAM中,由勾股定理得:OM=.
16、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
【点睛】
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
17、2或2.
【解析】
试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.
故答案为2或2.
考点:勾股定理
18、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①证明见解析;②25;(2)为或50+1.
【解析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.
【详解】
(1)、①证明:在Rt△ABC中,
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=AB=5,
∵点F是AB的中点,
∴AF=AB=5,
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,
即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AEF=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴y2﹣x2=25.
(2)①当点在线段CB上时, 由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,△ADE的面积为;
②当点在线段CB的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得AD2=200+100,
综上所述,△ADE的面积为或.
【点睛】
此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.
20、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
【解析】
(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
(2)根据众数的定义求解即可;
(3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
【详解】
(1)∵被调查的总人数为60÷30%=200人,
∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
补全图形如下:
(2)由条形图知,B情况出现次数最多,
所以众数为B,
故答案为B.
(3)1500×5%=75,
答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
【点睛】
本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.
21、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
【详解】
解:原式=
【点睛】
本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
22、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.
【解析】
(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
【详解】
解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
x=15,
经检验x=15是原方程的解.
∴40﹣x=1.
甲,乙两种玩具分别是15元/件,1元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,
,
解得20≤y<2.
因为y是整数,甲种玩具的件数少于乙种玩具的件数,
∴y取20,21,22,23,
共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
23、(1);(2)①;②当时,;
当时, ;当时, ;③.
【解析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、AB、OC、BC的解析式.①求出R、Q的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;
【详解】
解:(1)由题意是等腰直角三角形,
(2) ,
线直的解析式为,直线的解析式
时,直线恰好过点.
,
直线的解析式为,直线的解析式为
①当时,,
②当时,
当时,
当时,
③当时,
,
时, 的最大值为.
当时,
.
时, 的值最大,最大值为.
当时,,
时, 的最大值为,
综上所述,最大值为
故答案为.
【点睛】
本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.
24、﹣6+2
【解析】
分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.
详解:原式=1﹣6+﹣1+3×
=﹣5+﹣1+
=﹣6+2.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
25、 (1)300;(2)见解析;(3)108°;(4)约有840名.
【解析】
(1)根据A种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B的百分比得出其人数,即可补全条形图;
(3)用360°乘以C类人数占总人数的比例可得;
(4)总人数乘以C、D两类人数占样本的比例可得答案.
【详解】
解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)∵2000×=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.
【点睛】
本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
26、(1) ;(2)
【解析】
试题分析:(1)先去括号,再合并同类项即可;
(2)先计算括号里的,再将除法转换在乘法计算.
试题解析:
(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)
=a2﹣2ab+b2﹣a2+2ab+4a2﹣b2
=4a2;
(2).
=
=
=
=.
27、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.
【解析】
(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;
(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.
【详解】
解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.
由题意:x+2x+0.8+5.59=15.66,
解得x=3.09,
2x+0.8=6.98,
答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.
(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.
由题意:y甲=30×0.9m=27m,
y乙=30×0.8(m+2)=24m+48,
当y甲=y乙时,27m=24m+48,m=16,
当y甲>y乙时,27m>24m+48,m>16,
当y甲<y乙时,27m<24m+48,m<16,
答:当学生人数为16人时,两个旅行社的费用一样.
当学生人数为大于16人时,乙旅行社比较合算.
当学生人数为小于16人时,甲旅行社比较合算.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.
相关试卷
这是一份2021-2022学年山东省枣庄台儿庄区四校联考中考数学对点突破模拟试卷含解析,共20页。
这是一份2021-2022学年福建省泉州市泉港区三校联考八年级(下)期中数学试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年广东省茂名电白区七校联考中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了点P等内容,欢迎下载使用。