


福建厦门双十中学2022年中考联考数学试卷含解析
展开
这是一份福建厦门双十中学2022年中考联考数学试卷含解析,共20页。试卷主要包含了的算术平方根是,对于反比例函数y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在实数﹣3.5、、0、﹣4中,最小的数是( )
A.﹣3.5 B. C.0 D.﹣4
2.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
3.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( )
A. B.2 C.4 D.3
4.的算术平方根是( )
A.4 B.±4 C.2 D.±2
5.在△ABC中,∠C=90°,sinA=,则tanB等于( )
A. B.
C. D.
6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°
7.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )
A.120° B.110° C.100° D.80°
8.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B.当k>0时,y随x的增大而减小
C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D.反比例函数的图象关于直线y=﹣x成轴对称
9.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2
10.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )
A.18 B.22 C.24 D.46
11.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )
A. B. C. D.
12.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )
A.小亮骑自行车的平均速度是12 km/h
B.妈妈比小亮提前0.5 h到达姥姥家
C.妈妈在距家12 km处追上小亮
D.9:30妈妈追上小亮
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,AB=AC,∠A=36°, BD平分∠ABC交AC于点D,DE平分∠BDC交BC于点E,则= .
14.函数y= 中,自变量x的取值范围为_____.
15.观察以下一列数:3,,,,,…则第20个数是_____.
16.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=_____.
17.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
18.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副羽毛球拍送2个羽毛球.
设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
20.(6分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.
21.(6分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.
(1)甲车间每天加工零件为_____件,图中d值为_____.
(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.
(3)甲车间加工多长时间时,两车间加工零件总数为1000件?
22.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
23.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.
(1)求一次函数和反比例函数的表达式;
(2)观察图象:当时,比较.
24.(10分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.
25.(10分)先化简,再求值:,其中x=-5
26.(12分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
27.(12分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:≈1.414,≈1.732).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可
【详解】
在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.
【点睛】
掌握实数比较大小的法则
2、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
3、B
【解析】
【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.
【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,
设C(a,),则B(3a,),A(a,),
∵AC=BC,
∴﹣=3a﹣a,
解得a=1,(负值已舍去)
∴C(1,1),B(3,1),A(1,3),
∴AC=BC=2,
∴Rt△ABC中,AB=2,
故选B.
【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
4、C
【解析】
先求出的值,然后再利用算术平方根定义计算即可得到结果.
【详解】
=4,
4的算术平方根是2,
所以的算术平方根是2,
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
5、B
【解析】
法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
6、C
【解析】
由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.
【详解】
A.∵∠3=∠A,
本选项不能判断AB∥CD,故A错误;
B.∵∠D=∠DCE,
∴AC∥BD.
本选项不能判断AB∥CD,故B错误;
C.∵∠1=∠2,
∴AB∥CD.
本选项能判断AB∥CD,故C正确;
D.∵∠D+∠ACD=180°,
∴AC∥BD.
故本选项不能判断AB∥CD,故D错误.
故选:C.
【点睛】
考查平行线的判定,掌握平行线的判定定理是解题的关键.
7、D
【解析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
【详解】
∵∠DCF=100°,
∴∠DCE=80°,
∵AB∥CD,
∴∠AEF=∠DCE=80°.
故选D.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
8、D
【解析】
分析:根据反比例函数的性质一一判断即可;
详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
D.正确,本选项符合题意.
故选D.
点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
9、C
【解析】
解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
故选C.
10、B
【解析】
连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.
【详解】
解:∵AD∥BC,
∴∠EAF=∠ACB,∠AFE=∠FBC;
∵∠AEF=∠BEC,
∴△AEF∽△BEC,
∴==,
∵△AEF与△EFC高相等,
∴S△EFC=3S△AEF,
∵点F是□ABCD的边AD上的三等分点,
∴S△FCD=2S△AFC,
∵△AEF的面积为2,
∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.
故选B.
【点睛】
本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.
11、A
【解析】
解:分析题中所给函数图像,
段,随的增大而增大,长度与点的运动时间成正比.
段,逐渐减小,到达最小值时又逐渐增大,排除、选项,
段,逐渐减小直至为,排除选项.
故选.
【点睛】
本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
12、D
【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
【详解】
解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
∴小亮走的路程为:1×12=12km,
∴妈妈在距家12km出追上小亮,故正确;
D、由图象可知,当t=9时,妈妈追上小亮,故错误;
故选D.
【点睛】
本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题分析:因为△ABC中,AB=AC,∠A=36°
所以∠ABC=∠ACB=72°
因为BD平分∠ABC交AC于点D
所以∠ABD=∠CBD=36°=∠A
因为DE平分∠BDC交BC于点E
所以∠CDE=∠BDE=36°=∠A
所以AD=BD=BC
根据黄金三角形的性质知,
,,
所以
考点:黄金三角形
点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,
14、x≠1.
【解析】
该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.
【详解】
根据题意得:x−1≠0,
解得:x≠1.
故答案为x≠1.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.
15、
【解析】
观察已知数列得到一般性规律,写出第20个数即可.
【详解】
解:观察数列得:第n个数为,则第20个数是.
故答案为.
【点睛】
本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.
16、80°
【解析】
根据平行线的性质求出∠4,根据三角形内角和定理计算即可.
【详解】
解:
∵a∥b,
∴∠4=∠l=60°,
∴∠3=180°-∠4-∠2=80°,
故答案为:80°.
【点睛】
本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.
17、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
18、1
【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
【详解】
解:设利润为w元,
则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
∵10≤x≤20,
∴当x=1时,二次函数有最大值25,
故答案是:1.
【点睛】
本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、解:(1) yA=27x+270,yB=30x+240;(2)当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【解析】
(1)根据购买费用=单价×数量建立关系就可以表示出yA、yB的解析式;
(2)分三种情况进行讨论,当yA=yB时,当yA>yB时,当yA<yB时,分别求出购买划算的方案;
(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.
【详解】
解:(1)由题意,得yA=(10×30+3×10x)×0.9=27x+270;
yB=10×30+3(10x﹣20)=30x+240;
(2)当yA=yB时,27x+270=30x+240,得x=10;
当yA>yB时,27x+270>30x+240,得x<10;
当yA<yB时,27x+270<30x+240,得x>10
∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.
(3)由题意知x=15,15>10,
∴选择A超市,yA=27×15+270=675(元),
先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:
(10×15﹣20)×3×0.9=351(元),
共需要费用10×30+351=651(元).
∵651元<675元,
∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.
【点睛】
本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.
20、.
【解析】
根据零指数幂和特殊角的三角函数值进行计算
【详解】
解:原式=1﹣4×+2﹣
=1﹣2+2﹣
=
【点睛】
本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
21、80 770
【解析】
(1)由图象的信息解答即可;
(2)利用待定系数法确定解析式即可;
(3)根据题意列出方程解答即可.
【详解】
(1)由图象甲车间每小时加工零件个数为720÷9=80个,
d=770,
故答案为:80,770
(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,
∴B(4,120),C(9,770)
设yBC=kx+b,过B、C,
∴,解得,
∴y=130x﹣400(4≤x≤9)
(3)由题意得:80x+130x﹣400=1000,
解得:x=
答:甲车间加工天时,两车间加工零件总数为1000件
【点睛】
一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.
22、米.
【解析】
先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.
【详解】
由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,
设抛物线的表达式为:y=ax2+bx+1(a≠0),
则据题意得:,
解得:,
∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,
∵y=﹣(x﹣4)2+,
∴飞行的最高高度为:米.
【点睛】
本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.
23、(1);(2)
【解析】
(1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由△ODC与△BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;
(2)以A点为分界点,直接观察函数图象的高低即可知道答案.
【详解】
解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x轴于B,
∴ ,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
将C点坐标代入y=kx-2得4k-2=0,
∴k=,
∴一次函数解析式为y=x-2;
将A点坐标代入反比例函数解析式得m=6,
∴反比例函数解析式为y=;
(2)由函数图象可知:
当0<x<6时,y1<y2;
当x=6时,y1=y2;
当x>6时,y1>y2;
【点睛】
本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.
24、(1)证明:∵ABCD是平行四边形
∴AB=CD
AB∥CD
∴∠ABE=∠CDF
又∵AE⊥BD,CF⊥BD
∴∠AEB=∠CFD=
∴△ABE≌△CDF
∴BE=DF
【解析】
证明:在□ABCD中
∵AB∥CD
∴∠ABE=∠CDF…………………………………………………………4分
∵AE⊥BD CF⊥BD
∴∠AEB=∠CFD=900……………………………………………………5分
∵AB=CD
∴△ABE≌△CDF…………………………………………………………6分
∴BE=DF
25、,-
【解析】
分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
详解:
.
当时,原式.
点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.
26、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
27、(1)见解析;(2)是7.3米
【解析】
(1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解.
【详解】
解:(1)如下图,
图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则AD⊥BC;
图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则AD⊥BC;
(2)设AD=x,在Rt△ABD中,∠ABD=45°,
∴BD=AD=x,
∴CD=20﹣x.
∵tan∠ACD=,
即tan30°=,
∴x==10(﹣1)≈7.3(米).
答:路灯A离地面的高度AD约是7.3米.
【点睛】
解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可.
相关试卷
这是一份福建厦门双十中学2023-2024学年上学期八年级期末考试数学试卷+,共9页。
这是一份2023-2024学年福建厦门双十中学九上数学期末调研试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,用配方法解方程时,应将其变形为等内容,欢迎下载使用。
这是一份2023-2024学年福建厦门双十中学数学八上期末经典试题含答案,共7页。试卷主要包含了的平方根是,如果是完全平方式,则的值是等内容,欢迎下载使用。
