终身会员
搜索
    上传资料 赚现金

    福建厦门华侨中学2021-2022学年中考五模数学试题含解析

    立即下载
    加入资料篮
    福建厦门华侨中学2021-2022学年中考五模数学试题含解析第1页
    福建厦门华侨中学2021-2022学年中考五模数学试题含解析第2页
    福建厦门华侨中学2021-2022学年中考五模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建厦门华侨中学2021-2022学年中考五模数学试题含解析

    展开

    这是一份福建厦门华侨中学2021-2022学年中考五模数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中必然发生的事件是,化简的结果是,下列运算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有(  )
    A.4个 B.5个 C.6个 D.7个
    2.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是(  )
    A.1 B.2 C.﹣ D.﹣
    3.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
    A. B.
    C. D.
    4.下列事件中必然发生的事件是(  )
    A.一个图形平移后所得的图形与原来的图形不全等
    B.不等式的两边同时乘以一个数,结果仍是不等式
    C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
    D.随意翻到一本书的某页,这页的页码一定是偶数
    5.化简的结果是( )
    A.±4 B.4 C.2 D.±2
    6.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为( )

    A.20° B.30° C.36° D.40°
    7.下列运算正确的是(  )
    A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
    C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
    8.下列四个几何体,正视图与其它三个不同的几何体是(  )
    A. B.
    C. D.
    9.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是(  )
    年龄
    13
    14
    15
    25
    28
    30
    35
    其他
    人数
    30
    533
    17
    12
    20
    9
    2
    3
    A.平均数 B.众数 C.方差 D.标准差
    10.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(   )
    A.                      B.                      C.                      D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.
    12.函数y=中自变量x的取值范围是___________.
    13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.

    14.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.

    15.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.

    16.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
    17.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

    (1)求证:△ABG≌△C′DG;
    (2)求tan∠ABG的值;
    (3)求EF的长.
    19.(5分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.
    在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.
    20.(8分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P.
    (1)求这条抛物线的表达式和顶点P的坐标;
    (2)抛物线的对称轴与x轴相交于点M,求∠PMC的正切值;
    (3)点Q在y轴上,且△BCQ与△CMP相似,求点Q的坐标.

    21.(10分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.

    (1)若a=1,求反比例函数的解析式及b的值;
    (2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
    (3)若a﹣b=4,求一次函数的函数解析式.
    22.(10分)计算:解方程:
    23.(12分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.
    在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.
    24.(14分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.
    (1)求证:PB是⊙O的切线;
    (2)若⊙O的半径为2,求弦AB及PA,PB的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    依据不等式组至少有两个整数解,即可得到a>5,再根据存在以3,a,7为边的三角形,可得4<a<10,进而得出a的取值范围是5<a<10,即可得到a的整数解有4个.
    【详解】
    解:解不等式①,可得x<a,
    解不等式②,可得x≥4,
    ∵不等式组至少有两个整数解,
    ∴a>5,
    又∵存在以3,a,7为边的三角形,
    ∴4<a<10,
    ∴a的取值范围是5<a<10,
    ∴a的整数解有4个,
    故选:A.
    【点睛】
    此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    2、C
    【解析】
    试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
    故选C.
    考点:根与系数的关系
    3、B
    【解析】
    根据第二象限中点的特征可得: ,
    解得: .
    在数轴上表示为:
    故选B.
    考点:(1)、不等式组;(2)、第一象限中点的特征
    4、C
    【解析】
    直接利用随机事件、必然事件、不可能事件分别分析得出答案.
    【详解】
    A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;
    B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;
    C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;
    D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;
    故选C.
    【点睛】
    此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.
    5、B
    【解析】
    根据算术平方根的意义求解即可.
    【详解】
    4,
    故选:B.
    【点睛】
    本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.
    6、C
    【解析】
    由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,
    由折叠的性质得:,,
    ∴,,
    ∴;
    故选C.
    【点睛】
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
    7、B
    【解析】
    先根据同底数幂的乘法法则进行运算即可。
    【详解】
    A.;故本选项错误;
    B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
    C.;故本选项错误;
    D. 不是同类项不能合并; 故本选项错误;
    故选B.
    【点睛】
    先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
    8、C
    【解析】
    根据几何体的三视图画法先画出物体的正视图再解答.
    【详解】
    解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
    而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
    故选:C.
    【点睛】
    此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
    9、B
    【解析】
    分析:根据平均数的意义,众数的意义,方差的意义进行选择.
    详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.
    故选B.
    点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    10、B
    【解析】
    分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
    详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
    ∴b>0,
    ∵交点横坐标为1,
    ∴a+b+c=b,
    ∴a+c=0,
    ∴ac<0,
    ∴一次函数y=bx+ac的图象经过第一、三、四象限.
    故选B.
    点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.

    二、填空题(共7小题,每小题3分,满分21分)
    11、21
    【解析】
    每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元.
    12、x≥﹣且x≠1
    【解析】
    试题解析:根据题意得:
    解得:x≥﹣且x≠1.
    故答案为:x≥﹣且x≠1.
    13、4π
    【解析】
    根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.
    【详解】
    解:∵四边形ABCD内接于⊙O,
    ∴∠BCD+∠A=180°,
    ∵∠BOD=2∠A,∠BOD=∠BCD,
    ∴2∠A+∠A=180°,
    解得:∠A=60°,
    ∴∠BOD=120°,
    ∴的长=,
    故答案为4π.
    【点睛】
    本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.
    14、
    【解析】
    解:如图,作OH⊥DK于H,连接OK,

    ∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.
    ∴根据折叠对称的性质,A'D=2CD.
    ∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.
    ∴∠DOK=120°.
    ∴扇形ODK的面积为.
    ∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.
    ∴△ODK的面积为.
    ∴半圆还露在外面的部分(阴影部分)的面积是:.
    故答案为:.
    15、1.
    【解析】
    在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
    【详解】
    解:Rt△ABC中,∵BC=4,tanA=


    故答案为1.
    【点睛】
    考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
    16、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
    【详解】
    解:1.111121=2.1×11-2.
    故答案为:2.1×11-2.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
    17、
    【解析】
    过O作OF⊥AO且使OF=AO,连接AF、CF,可知△AOF是等腰直角三角形,进而可得AF=AO,根据正方形的性质可得OB=OC,∠BOC=90°,由锐角互余的关系可得∠AOB=∠COF,进而可得△AOB≌△COF,即可证明AB=CF,当点A、C、F三点不共线时,根据三角形的三边关系可得AC+CF>AF,当点A、C、F三点共线时可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.
    【详解】
    如图,过O作OF⊥AO且使OF=AO,连接AF、CF,
    ∴∠AOF=90°,△AOF是等腰直角三角形,
    ∴AF=AO,
    ∵四边形BCDE是正方形,
    ∴OB=OC,∠BOC=90°,
    ∵∠BOC=∠AOF=90°,
    ∴∠AOB+∠AOC=∠COF+∠AOC,
    ∴∠AOB=∠COF,
    又∵OB=OC,AO=OF,
    ∴△AOB≌△COF,
    ∴CF=AB=4,
    当点A、C、F三点不共线时,AC+CF>AF,
    当点A、C、F三点共线时,AC+CF=AC+AB=AF=7,
    ∴AF≤AC+CF=7,
    ∴AF的最大值是7,
    ∴AF=AO=7,
    ∴AO=.

    故答案为
    【点睛】
    本题考查正方形的性质,全等三角形的判定与性质,熟练掌握相关定理及性质是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)7/24(3)25/6
    【解析】(1)证明:∵△BDC′由△BDC翻折而成,
    ∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
    在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
    ∴△ABG≌△C′DG(ASA)。
    (2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
    设AG=x,则GB=1﹣x,
    在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
    ∴。
    (3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
    ∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
    ∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
    ∴EF=EH+HF=。
    (1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
    (2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
    (3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
    19、(1)见解析;(2)见解析;(3)见解析,.
    【解析】
    (1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.
    【详解】
    解:(1)如图所示;
    (2)如图所示;(3)如图所示;CE=.

    【点睛】
    本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.
    20、(1)(1,4)(2)(0,)或(0,-1)
    【解析】
    试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;
    (2)由OC//PM,可得∠PMC=∠MCO,求tan∠MCO即可 ;
    (3)分情况进行讨论即可得.
    试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),∴OC=3,
    ∵OA=OC,∴OA=3,∴A(3,0),
    ∵A、B关于x=1对称,∴B(-1,0),
    ∵A、B在抛物线y=ax2+bx+3上,
    ∴ ,∴ ,
    ∴抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,
    ∴顶点P(1,4);
    (2)由(1)可知P(1,4),C(0,3),所以M(1,0),∴OC=3,OM=1,
    ∵OC//PM,∴∠PMC=∠MCO,
    ∴tan∠PMC=tan∠MCO= = ;
    (3)Q在C点的下方,∠BCQ=∠CMP,
    CM=,PM=4,BC=,
    ∴或 ,
    ∴CQ=或4,
    ∴Q1(0,),Q2(0,-1).

    21、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
    【解析】
    (1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
    【详解】
    (1)若a=1,则A(1,4),
    设反比例函数的解析式为y=(k≠0),
    ∵点A在反比例函数的图象上,
    ∴4=,
    解得k=4,
    ∴反比例函数解析式为y=;
    ∵点B(﹣4,b)在反比例函数的图象上,
    ∴b==﹣1,
    即反比例函数的解析式为y=,b的值为﹣1;
    (1)由(1)知A(1,4),B(﹣4,﹣1),
    根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
    (3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
    ∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
    ∴,即,
    ①+②得4a﹣4b=1p,
    ∵a﹣b=4,
    ∴16=1p,
    解得p=8,
    把p=8代入①得4a=8,代入②得﹣4b=8,
    解得a=1,b=﹣1,
    ∴A(1,4),B(﹣4,﹣1),
    ∵点A、点B在一次函数y=mx+n图象上,

    解得
    ∴一次函数的解析式为y=x+1.
    【点睛】
    本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
    22、 (1)10;(2)原方程无解.
    【解析】
    (1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    (1)原式==10;
    (2)去分母得:3(5x﹣4)+3x﹣6=4x+10,
    解得:x=2,
    经检验:x=2是增根,原方程无解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    23、(1)答案见解析;(2)答案见解析.
    【解析】
    试题分析:(1)根据等腰直角三角形的性质即可解决问题.
    (2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.
    试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).

    (2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.

    考点:作图—应用与设计作图.
    24、(1)见解析;(2)2
    【解析】
    试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;
    (2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.
    (1)连接OB.
    ∵OA=OB,∴∠OBA=∠BAC=30°.
    ∴∠AOB=80°-30°-30°=20°.
    ∵PA切⊙O于点A,∴OA⊥PA,
    ∴∠OAP=90°.
    ∵四边形的内角和为360°,
    ∴∠OBP=360°-90°-60°-20°=90°.
    ∴OB⊥PB.
    又∵点B是⊙O上的一点,
    ∴PB是⊙O的切线.
    (2)连接OP,

    ∵PA、PB是⊙O的切线,
    ∴PA=PB,∠OPA=∠OPB=,∠APB=30°.
    在Rt△OAP中,∠OAP=90°,∠OPA=30°,
    ∴OP=2OA=2×2=1.
    ∴PA=OP2-OA2=2
    ∵PA=PB,∠APB=60°,
    ∴PA=PB=AB=2.
    考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质
    点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.

    相关试卷

    深圳市华侨实验中学2021-2022学年中考适应性考试数学试题含解析:

    这是一份深圳市华侨实验中学2021-2022学年中考适应性考试数学试题含解析,共21页。

    福建厦门华侨中学2022年中考冲刺卷数学试题含解析:

    这是一份福建厦门华侨中学2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,y=,的化简结果为,已知方程组,那么x+y的值等内容,欢迎下载使用。

    2021-2022学年广东省中学山市华侨中学中考五模数学试题含解析:

    这是一份2021-2022学年广东省中学山市华侨中学中考五模数学试题含解析,共18页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map