福建省莆田市哲理中学2022年中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )
A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
2.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A. B. C. D.
3.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )
A. B. C. D.
4.下列各式中的变形,错误的是(( )
A. B. C. D.
5.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
6.若分式的值为0,则x的值为( )
A.-2 B.0 C.2 D.±2
7.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
8.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣2,1) B.(﹣8,4)
C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
9.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是( )
A.A或B B.B或C C.C或D D.D或A
10.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是( )
A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0
11.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
A. B. C. D.
12.下列各数中是无理数的是( )
A.cos60° B. C.半径为1cm的圆周长 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.
14.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .
15.已知n>1,M=,N=,P=,则M、N、P的大小关系为 .
16.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
17.不等式组的最小整数解是_____.
18.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平行四边形ABCD中,连接AC,做△ABC的外接圆⊙O,延长EC交⊙O于点D,连接BD、AD,BC与AD交于点F分,∠ABC=∠ADB。
(1)求证:AE是⊙O的切线;
(2)若AE=12,CD=10,求⊙O的半径。
20.(6分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
21.(6分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
(1)求y关于x的函数解析式;
(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
22.(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
23.(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
24.(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
25.(10分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.
26.(12分)先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。
27.(12分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.
求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:
根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
详解:
由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
又∵被调查学生总数为120人,
∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
综上所述,选项D中数据正确.
故选D.
点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
2、D
【解析】
A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
故选D.
3、B
【解析】
连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
【详解】
解:连接OA、OB,
∵四边形ABCD是正方形,
∴∠AOB=90°,∠OAB=45°,
∴OA=ABcos45°=4×=2,
所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
故选B.
【点睛】
本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
4、D
【解析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
5、D
【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.
【详解】
根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,
A、,错误;
B、,错误;
C、,错误;
D、,正确;
故选D.
【点睛】
本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.
6、C
【解析】
由题意可知:,
解得:x=2,
故选C.
7、C
【解析】
试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
考点:平行线的性质.
8、D
【解析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
【详解】
∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
故选D.
【点睛】
此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
9、B
【解析】
根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.
【详解】
∵AB=BC=CD=1,
∴当点A为原点时,|a|+|b|>2,不合题意;
当点B为原点时,|a|+|b|=2,符合题意;
当点C为原点时,|a|+|b|=2,符合题意;
当点D为原点时,|a|+|b|>2,不合题意;
故选:B.
【点睛】
此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.
10、C
【解析】
首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.
【详解】
∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,
∴1=﹣,
解得:x=﹣3,
∴P(﹣3,1),
故不等式ax2+bx+>1的解集是:x<﹣3或x>1.
故选C.
【点睛】
本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.
11、B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
故选B.
考点:概率.
12、C
【解析】
分析:根据“无理数”的定义进行判断即可.
详解:
A选项中,因为,所以A选项中的数是有理数,不能选A;
B选项中,因为是无限循环小数,属于有理数,所以不能选B;
C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
D选项中,因为,2是有理数,所以不能选D.
故选.C.
点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、π﹣1.
【解析】
连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.
【详解】
连接CD,作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.
则扇形FDE的面积是:=π.
∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.
又∵DM⊥BC,DN⊥AC,∴DM=DN.
∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.
则阴影部分的面积是:π﹣1.
故答案为π﹣1.
【点睛】
本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
14、3
【解析】
试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.
考点:3.菱形的性质;3.解直角三角形;3.网格型.
15、M>P>N
【解析】
∵n>1,
∴n-1>0,n>n-1,
∴M>1,0
,
∴,
∴M>P>N.
点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么ab,b>c,那么a>b>c.
16、
【解析】
设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
【详解】
解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
解得:x=或(舍去).
故答案为.
【点睛】
本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
17、-1
【解析】
分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
详解: .
∵解不等式①得:x>-3,
解不等式②得:x≤1,
∴不等式组的解集为-3<x≤1,
∴不等式组的最小整数解是-1,
故答案为:-1.
点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.
18、2
【解析】
试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.
∴C△EBF==C△HAE=2.
考点:1折叠问题;2勾股定理;1相似三角形.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2).
【解析】
(1)作辅助线,先根据垂径定理得:OA⊥BC,再证明OA⊥AE,则AE是⊙O的切线;
(2)连接OC,证明△ACE∽△DAE,得,计算CE的长,设⊙O的半径为r,根据勾股定理得:r2=62+(r-2)2,解出可得结论.
【详解】
(1)证明:连接OA,交BC于G,
∵∠ABC=∠ADB.∠ABC=∠ADE,
∴∠ADB=∠ADE,
∴,
∴OA⊥BC,
∵四边形ABCE是平行四边形,
∴AE∥BC,
∴OA⊥AE,
∴AE是⊙O的切线;
(2)连接OC,
∵AB=AC=CE,
∴∠CAE=∠E,
∵四边形ABCE是平行四边形,
∴BC∥AE,∠ABC=∠E,
∴∠ADC=∠ABC=∠E,
∴△ACE∽△DAE,,
∵AE=12,CD=10,
∴AE2=DE•CE,
144=(10+CE)CE,
解得:CE=8或-18(舍),
∴AC=CE=8,
∴Rt△AGC中,AG==2,
设⊙O的半径为r,
由勾股定理得:r2=62+(r-2)2,
r=,
则⊙O的半径是.
【点睛】
此题考查了垂径定理,圆周角定理,相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关键.
20、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.
【解析】
(1)先利用待定系数法求一次函数解析式;
(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.
【详解】
(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;
(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.
∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.
答:售价定为130元时,每天获得的利润最大,最大利润是2元.
【点睛】
本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.
21、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
【解析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
(2)解不等式求出x的范围,根据一次函数的性质计算即可.
【详解】
解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
整理得,y=0.2x+14(0<x<35);
(2)由题意得,35﹣x≤2x,
解得,x≥,
则x的最小整数为12,
∵k=0.2>0,
∴y随x的增大而增大,
∴当x=12时,y有最小值16.4,
答:该公司至少需要投入资金16.4万元.
【点睛】
本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.
22、小时
【解析】
过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
【详解】
解:如图,过点C作CD⊥AB交AB延长线于D.
在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
∴CD=AC=40海里.
在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
∴BC=≈=50(海里),
∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).
考点:解直角三角形的应用-方向角问题
23、A、B两种型号的空调购买价分别为2120元、2320元
【解析】
试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
解得:
答:A、B两种型号的空调购买价分别为2120元、2320元
24、29.8米.
【解析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
【详解】
解:如图,作,,
由题意得:
米,
米,
则米,
答:这架无人飞机的飞行高度为米.
【点睛】
此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
25、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【解析】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,
根据题意得:﹣=3,
解得:x1=161,x2=﹣264(不合题意,舍去),
经检验,x=161是原方程的解,
∴x+99=264,1320÷(x+99)=1.
答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【点睛】
本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
26、-2
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.
【详解】
原式=
=
= ,
∵x≠±1且x≠0,
∴在-1≤x≤2中符合条件的x的值为x=2,
则原式=- =-2.
【点睛】
此题考查分式的化简求值,解题关键在于掌握运算法则.
27、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
【详解】
证明:(1)∵在平行四边形ABCD中,AD∥BC,
∴∠AEB=∠EAD.
∵AE=AB,
∴∠ABE=∠AEB.
∴∠ABE=∠EAD.
(2)∵AD∥BC,
∴∠ADB=∠DBE.
∵∠ABE=∠AEB,∠AEB=2∠ADB,
∴∠ABE=2∠ADB.
∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
∴AB=AD.
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
2023年福建省莆田市城厢区哲理中学中考数学模拟试卷(6月份)(含解析): 这是一份2023年福建省莆田市城厢区哲理中学中考数学模拟试卷(6月份)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省莆田市哲理中学2022年中考猜题数学试卷含解析: 这是一份福建省莆田市哲理中学2022年中考猜题数学试卷含解析,共19页。试卷主要包含了下列运算正确的是,实数﹣5.22的绝对值是等内容,欢迎下载使用。
2022年潮南区实验中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年潮南区实验中学中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,八边形的内角和为,不等式组的解集是,一次函数的图象不经过等内容,欢迎下载使用。