终身会员
搜索
    上传资料 赚现金
    福建省龙岩市金丰片区2022年中考三模数学试题含解析
    立即下载
    加入资料篮
    福建省龙岩市金丰片区2022年中考三模数学试题含解析01
    福建省龙岩市金丰片区2022年中考三模数学试题含解析02
    福建省龙岩市金丰片区2022年中考三模数学试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省龙岩市金丰片区2022年中考三模数学试题含解析

    展开
    这是一份福建省龙岩市金丰片区2022年中考三模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,函数y=自变量x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.计算(x-2)(x+5)的结果是
    A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-10
    2.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=(  )

    A.141° B.144° C.147° D.150°
    3.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
    A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
    4.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(  )
    A. B. C. D.
    5.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是(  )

    A.甲超市的利润逐月减少
    B.乙超市的利润在1月至4月间逐月增加
    C.8月份两家超市利润相同
    D.乙超市在9月份的利润必超过甲超市
    6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是(  )

    A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
    7.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )

    A. B.
    C. D.
    8.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    9.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是(  )

    A.点A与点B B.点A与点D C.点B与点D D.点B与点C
    10.函数y=自变量x的取值范围是( )
    A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
    12.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.

    13.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.

    14.一辆汽车在坡度为的斜坡上向上行驶130米,那么这辆汽车的高度上升了__________米.
    15.分解因式:x2﹣4=_____.
    16.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角 °.
    三、解答题(共8题,共72分)
    17.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.

    (1)求证:∠F=∠B;
    (2)若AB=12,BG=10,求AF的长.
    18.(8分)解不等式组
    19.(8分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
    (1)求一次至少购买多少只计算器,才能以最低价购买?
    (2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
    (3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
    20.(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)

    21.(8分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414

    22.(10分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.

    (1)若直线经过、两点,求直线和抛物线的解析式;
    (2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
    (3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
    23.(12分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.
    (1)利用直尺和圆规在图1确定点P,使得PM=PN;
    (2)设OM=x,ON=x+4,
    ①若x=0时,使P、M、N构成等腰三角形的点P有  个;
    ②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.

    24.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
    根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据多项式乘以多项式的法则进行计算即可.
    【详解】

    故选:C.
    【点睛】
    考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.
    2、B
    【解析】
    先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
    【详解】
    (6﹣2)×180°÷6=120°,
    (5﹣2)×180°÷5=108°,
    ∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
    =720°﹣360°﹣216°
    =144°,
    故选B.
    【点睛】
    本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
    3、C
    【解析】
    试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
    考点:科学记数法.
    4、B
    【解析】
    直接得出两位数是3的倍数的个数,再利用概率公式求出答案.
    【详解】
    ∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
    十位数为3,则两位数是3的倍数的个数为2.
    ∴得到的两位数是3的倍数的概率为: =.
    故答案选:B.
    【点睛】
    本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.
    5、D
    【解析】
    【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
    【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
    B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
    C、8月份两家超市利润相同,此选项正确,不符合题意;
    D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
    故选D.
    【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
    6、B
    【解析】
    分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
    详解:乙和△ABC全等;理由如下:
    在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
    所以乙和△ABC全等;
    在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
    所以丙和△ABC全等;
    不能判定甲与△ABC全等;
    故选B.
    点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    7、D
    【解析】
    分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
    【详解】
    阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
    即:a2﹣b2=(a+b)(a﹣b).
    所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
    故选:D.
    【点睛】
    考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
    8、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    9、A
    【解析】
    试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
    倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
    倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
    故选A.
    考点:1.倒数的定义;2.数轴.
    10、B
    【解析】
    由题意得,
    x-1≥0且x-3≠0,
    ∴x≥1且x≠3.
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、k≥-1
    【解析】
    首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
    【详解】
    当时,方程是一元一次方程:,方程有实数根;
    当时,方程是一元二次方程,
    解得:且.
    综上所述,关于的方程有实数根,则的取值范围是.
    故答案为
    【点睛】
    考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
    这种情况.
    12、10<a≤10.
    【解析】
    根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.
    【详解】
    ∵M是AB的中点,MC=MA=5,
    ∴△ABC为直角三角形,AB=10;
    ∴a=AC+BC>AB=10;
    令AC=x、BC=y.
    ∴,
    ∴xy=,
    ∴x、y是一元二次方程z2-az+=0的两个实根,
    ∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10.
    故答案为10<a≤10.
    【点睛】
    本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.
    13、6﹣2
    【解析】
    由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.
    【详解】
    解:设B′C′和CD的交点是O,连接OA,
    ∵AD=AB′,AO=AO,∠D=∠B′=90°,
    ∴Rt△ADO≌Rt△AB′O,
    ∴∠OAD=∠OAB′=30°,
    ∴OD=OB′= ,
    S四边形AB′OD=2S△AOD=2××=2,
    ∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.

    【点睛】
    此题的重点是能够计算出四边形的面积.注意发现全等三角形.
    14、50.
    【解析】
    根据坡度的定义可以求得AC、BC的比值,根据AC、BC的比值和AB的长度即可求得AC的值,即可解题.
    【详解】
    解:如图,米


    设,则,
    则,
    解得,
    故答案为:50.
    【点睛】
    本题考查了勾股定理在直角三角形中的运用,坡度的定义及直角三角形中三角函数值的计算,属于基础题.
    15、(x+2)(x﹣2)
    【解析】【分析】直接利用平方差公式进行因式分解即可.
    【详解】x2﹣4
    =x2-22
    =(x+2)(x﹣2),
    故答案为:(x+2)(x﹣2).
    【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
    16、1
    【解析】
    试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.
    解:∵侧面积为15πcm2,
    ∴圆锥侧面积公式为:S=πrl=π×3×l=15π,
    解得:l=5,
    ∴扇形面积为15π=,
    解得:n=1,
    ∴侧面展开图的圆心角是1度.
    故答案为1.
    考点:圆锥的计算.

    三、解答题(共8题,共72分)
    17、(1)见解析;(2).
    【解析】
    (1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
    (2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:∵,
    ∴.
    ∴∠GAB=∠B,
    ∵AF是⊙O的切线,
    ∴AF⊥AO.
    ∴∠GAB+∠GAF=90°.
    ∵OE⊥AC,
    ∴∠F+∠GAF=90°.
    ∴∠F=∠GAB,
    ∴∠F=∠B;
    (2)解:连接OG.
    ∵∠GAB=∠B,
    ∴AG=BG.
    ∵OA=OB=6,
    ∴OG⊥AB.
    ∴,
    ∵∠FAO=∠BOG=90°,∠F=∠B,
    ∴△FAO∽△BOG,
    ∴.
    ∴.

    【点睛】
    本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    18、﹣1≤x<1.
    【解析】
    分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【详解】
    解不等式2x+1≥﹣1,得:x≥﹣1,
    解不等式x+1>4(x﹣2),得:x<1,
    则不等式组的解集为﹣1≤x<1.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    19、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
    【解析】
    试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
    (3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
    (3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
    试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
    答:一次至少买1只,才能以最低价购买;
    (3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
    综上所述:;
    (3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
    ②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
    且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
    即出现了卖46只赚的钱比卖1只赚的钱多的现象.
    当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
    考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
    20、7.3米
    【解析】
    :如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可.
    【详解】
    解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,
    ∴AH=HF,设AH=HF=x,则EF=2x,EH=x,
    在Rt△AEB中,∵∠E=30°,AB=5米,
    ∴AE=2AB=10米,
    ∴x+x=10,
    ∴x=5﹣5,
    ∴EF=2x=10﹣10≈7.3米,
    答:E与点F之间的距离为7.3米
    【点睛】
    本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.
    21、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【解析】
    根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
    【详解】
    解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
    在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
    ∵∠CBD=15°,∴BD=CD=2.
    在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.

    答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
    【点睛】
    本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
    22、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
    【解析】
    分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
    (2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;
    (3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
    详解:(1)依题意得:,解得:,
    ∴抛物线的解析式为.
    ∵对称轴为,且抛物线经过,
    ∴把、分别代入直线,
    得,解之得:,
    ∴直线的解析式为.

    (2)直线与对称轴的交点为,则此时的值最小,把代入直线得,
    ∴.即当点到点的距离与到点的距离之和最小时的坐标为.
    (注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).
    (3)设,又,,
    ∴,,,
    ①若点为直角顶点,则,即:解得:,
    ②若点为直角顶点,则,即:解得:,
    ③若点为直角顶点,则,即:解得:
    ,.
    综上所述的坐标为或或或.
    点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.
    23、(1)见解析;(2)①1;②:x=0或x=4﹣4或4<x<4;
    【解析】
    (1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.
    【详解】
    解:(1)如图所示:

    (2)①如图所示:

    故答案为1.
    ②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,

    ∴MC⊥OB,
    ∵∠AOB=45°,
    ∴△MCO是等腰直角三角形,
    ∴MC=OC=4,

    当M与D重合时,即时,同理可知:点P恰好有三个;
    如图4,取OM=4,以M为圆心,以OM为半径画圆.

    则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;
    点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;
    ∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;
    综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或
    故答案为x=0或或
    【点睛】
    本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.
    24、(1);(2)
    【解析】
    (1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.
    (2)由题意可得,出现的所有可能性是:
    (A,A)、(A,B)、(A,C)、(A,C)、
    (A,A)、(A,B)、(A,C)、(A,C)、
    (B,A)、(B,B)、(B,C)、(B,C)、
    (C,A)、(C,B)、(C,C)、(C,C),
    ∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.
    考点:列表法与树状图法;概率公式.

    相关试卷

    福建省龙岩市金丰片区重点名校2022年中考数学仿真试卷含解析: 这是一份福建省龙岩市金丰片区重点名校2022年中考数学仿真试卷含解析,共17页。试卷主要包含了如图,O为原点,点A的坐标为,计算3的结果是等内容,欢迎下载使用。

    福建省龙岩市永定区金丰片2021-2022学年中考数学模拟预测题含解析: 这是一份福建省龙岩市永定区金丰片2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了点P等内容,欢迎下载使用。

    2022届福建省龙岩市金丰片区重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届福建省龙岩市金丰片区重点名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了答题时请按要求用笔,已知二次函数y=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map