终身会员
搜索
    上传资料 赚现金

    东省济宁市金乡县2021-2022学年中考二模数学试题含解析

    立即下载
    加入资料篮
    东省济宁市金乡县2021-2022学年中考二模数学试题含解析第1页
    东省济宁市金乡县2021-2022学年中考二模数学试题含解析第2页
    东省济宁市金乡县2021-2022学年中考二模数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    东省济宁市金乡县2021-2022学年中考二模数学试题含解析

    展开

    这是一份东省济宁市金乡县2021-2022学年中考二模数学试题含解析,共24页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    2.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线(  )
    A.x=1 B.x= C.x=﹣1 D.x=﹣
    3.下列关于统计与概率的知识说法正确的是(  )
    A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
    B.检测100只灯泡的质量情况适宜采用抽样调查
    C.了解北京市人均月收入的大致情况,适宜采用全面普查
    D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
    4.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    2
    y
    8
    3
    0
    ﹣1
    0
    则抛物线的顶点坐标是(  )
    A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
    5.二次函数的图像如图所示,下列结论正确是( )

    A. B. C. D.有两个不相等的实数根
    6.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    7.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

    A.315° B.270° C.180° D.135°
    8.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
    A. B. C. D.
    9.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4
    C. D.(a2b)3=a5b3
    10.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )

    A.无法求出 B.8 C.8 D.16
    11.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
    沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )

    A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
    12.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.
    14.如图,正△ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正△ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留π);若 A 点落在圆上记做第 1 次旋转,将△ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将△ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转……,若此旋转下去,当△ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次.

    15.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .

    16.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.

    17.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
    18.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
    (1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
    (2)求两次摸出的球上的数字和为偶数的概率.
    20.(6分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
    (1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
    (2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
    (3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
    21.(6分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
    (1)求 x 的范围;
    (2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
    22.(8分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
    (1)本次调查了   名学生,扇形统计图中“1部”所在扇形的圆心角为   度,并补全条形统计图;
    (2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
    (3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.

    23.(8分)如图,在锐角△ABC中,小明进行了如下的尺规作图:
    ①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
    ②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的   ;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.

    24.(10分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.

    25.(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
    26.(12分)计算:﹣(﹣2)2+|﹣3|﹣20180×
    27.(12分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
    (1)求该抛物线的解析式;
    (2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
    (3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
    2、D
    【解析】
    设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.
    【详解】
    解:∵A在反比例函数图象上,∴可设A点坐标为(a,).
    ∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).
    又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.
    故选D.
    【点睛】
    本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.
    3、B
    【解析】
    根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
    【详解】
    解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
    B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
    C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
    D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
    故选B.
    【点睛】
    本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
    4、C
    【解析】
    分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
    详解:当或时,,当时,,
    ,解得 ,
    二次函数解析式为,
    抛物线的顶点坐标为,
    故选C.
    点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
    5、C
    【解析】
    【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
    【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
    ∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
    当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
    ∵抛物线的顶点为(1,3),
    ∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
    故选C.
    【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
    6、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    7、B
    【解析】
    利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.
    【详解】
    如图,

    ∵∠1、∠2是△CDE的外角,
    ∴∠1=∠4+∠C,∠2=∠3+∠C,
    即∠1+∠2=2∠C+(∠3+∠4),
    ∵∠3+∠4=180°-∠C=90°,
    ∴∠1+∠2=2×90°+90°=270°.
    故选B.
    【点睛】
    此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.
    8、D
    【解析】
    甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
    【详解】
    解:由于函数的图像经过点,则有

    ∴图象过第二、四象限,
    ∵k=-1,
    ∴一次函数y=x-1,
    ∴图象经过第一、三、四象限,
    故选:D.
    【点睛】
    本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
    9、B
    【解析】
    由整数指数幂和分式的运算的法则计算可得答案.
    【详解】
    A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
    B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
    C项,根据分式的加法法则可得:,故C项错误;
    D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
    故本题正确答案为B.
    【点睛】
    幂的运算法则:
    (1) 同底数幂的乘法: (m、n都是正整数)
    (2)幂的乘方:(m、n都是正整数)
    (3)积的乘方: (n是正整数)
    (4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
    (5)零次幂:(a≠0)
    (6) 负整数次幂: (a≠0, p是正整数).
    10、D
    【解析】
    试题分析:设AB于小圆切于点C,连接OC,OB.

    ∵AB于小圆切于点C,
    ∴OC⊥AB,
    ∴BC=AC=AB=×8=4cm.
    ∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)
    又∵直角△OBC中,OB2=OC2+BC2
    ∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.
    故选D.
    考点:1.垂径定理的应用;2.切线的性质.
    11、C
    【解析】
    如图所示,连接CM,
    ∵M是AB的中点,
    ∴S△ACM=S△BCM=S△ABC,
    开始时,S△MPQ=S△ACM=S△ABC;
    由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
    结束时,S△MPQ=S△BCM=S△ABC.
    △MPQ的面积大小变化情况是:先减小后增大.故选C.
    12、B
    【解析】
    试题解析:如图所示:

    设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=;
    故选B.
    【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(y﹣1)1(x﹣1)1.
    【解析】
    解:令x+y=a,xy=b,
    则(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)
    =(b﹣1)1﹣(a﹣1b)(1﹣a)
    =b1﹣1b+1+a1﹣1a﹣1ab+4b
    =(a1﹣1ab+b1)+1b﹣1a+1
    =(b﹣a)1+1(b﹣a)+1
    =(b﹣a+1)1;
    即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.
    故答案为(y﹣1)1(x﹣1)1.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (1)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
    14、,1.
    【解析】
    首先连接OA′、OB、OC,再求出∠C′BC的大小,进而利用弧长公式问题即可解决.因为△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,2017÷12=1.08,推出当△ABC完成第2017次旋转时,BC边共回到原来位置1次.
    【详解】
    如图,连接OA′、OB、OC.

    ∵OB=OC=,BC=2,
    ∴△OBC是等腰直角三角形,
    ∴∠OBC=45°;
    同理可证:∠OBA′=45°,
    ∴∠A′BC=90°;
    ∵∠ABC=60°,
    ∴∠A′BA=90°-60°=30°,
    ∴∠C′BC=∠A′BA=30°,
    ∴当点A第一次落在圆上时,则点C运动的路线长为:.
    ∵△ABC是三边在正方形CBA′C″上,BC边每12次回到原来位置,
    2017÷12=1.08,
    ∴当△ABC完成第2017次旋转时,BC边共回到原来位置1次,
    故答案为:,1.
    【点睛】
    本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题.
    15、31°.
    【解析】
    试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.
    ∵AB∥CD,
    ∴∠1=∠EFD=62°,
    ∵FG平分∠EFD,
    ∴∠2=∠EFD=×62°=31°.
    故答案是31°.
    考点:平行线的性质.
    16、
    【解析】
    解:如图,作OH⊥DK于H,连接OK,

    ∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.
    ∴根据折叠对称的性质,A'D=2CD.
    ∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.
    ∴∠DOK=120°.
    ∴扇形ODK的面积为.
    ∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.
    ∴△ODK的面积为.
    ∴半圆还露在外面的部分(阴影部分)的面积是:.
    故答案为:.
    17、2:1
    【解析】
    先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
    故答案为2:1.
    点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
    18、1
    【解析】
    试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.
    考点:一元二次方程的解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)画树状图得:

    则共有9种等可能的结果;
    (2)两次摸出的球上的数字和为偶数的概率为:.
    【解析】
    试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
    (2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
    试题解析:(1)画树状图得:

    则共有9种等可能的结果;
    (2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
    ∴两次摸出的球上的数字和为偶数的概率为:.
    考点:列表法与树状图法.
    20、(1);(2);(3)一.
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
    (3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
    【详解】
    解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
    故答案为;
    (2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
    画树状图为:(用Z表示正确选项,C表示错误选项)

    共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
    所以小敏顺利通关的概率=;
    (3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)

    共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
    由于>,
    所以建议小敏在答第一道题时使用“求助”.
    【点睛】
    本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
    21、(1)0<x≤200,且 x是整数(2)175
    【解析】
    (1)根据商场的规定确定出x的范围即可;
    (2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
    【详解】
    (1)根据题意得:0<x≤200,且x为整数;
    (2)设小王原计划购买x个纪念品,
    根据题意得:,
    整理得:5x+175=6x,
    解得:x=175,
    经检验x=175是分式方程的解,且满足题意,
    则小王原计划购买175个纪念品.
    【点睛】
    此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
    22、(1)40、126(2)240人(3)
    【解析】
    (1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;
    (2)用1600乘以4部所占的百分比即可;
    (3)根据树状图所得的结果,判断他们选中同一名著的概率.
    【详解】
    (1)调查的总人数为:10÷25%=40,
    ∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,
    则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;

    故答案为40、126;
    (2)预估其中4部都读完了的学生有1600×=240人;
    (3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
    画树状图可得:

    共有16种等可能的结果,其中选中同一名著的有4种,
    故P(两人选中同一名著)==.
    【点睛】
    本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
    23、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
    【解析】
    (1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
    (2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
    【详解】
    (1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
    故答案为线段AB的垂直平分线(或中垂线);
    (2)过点D作DF⊥AC,垂足为点F,如图,
    ∵DE是线段AB的垂直平分线,
    ∴AD=BD=7
    ∴CD=BC﹣BD=2,
    在Rt△ADF中,∵sin∠DAC=,
    ∴DF=1,
    在Rt△ADF中,AF=,
    在Rt△CDF中,CF=,
    ∴AC=AF+CF=.

    【点睛】
    本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.
    24、见解析
    【解析】
    根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.
    【详解】
    如图为画出的菱形:

    【点睛】
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.
    25、100或200
    【解析】
    试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
    试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
    列方程得,
    (8+×4)=4800,
    x2﹣300x+20000=0,
    解得x1=200,x2=100;
    要使百姓得到实惠,只能取x=200,
    答:每台冰箱应降价200元.
    考点:一元二次方程的应用.
    26、﹣1
    【解析】
    根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
    【详解】
    原式=﹣1+3﹣1×3=﹣1.
    【点睛】
    本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
    27、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
    【解析】
    试题分析:把点代入抛物线,求出的值即可.
    先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
    联立方程求出点的坐标, 最大值=,
    进而计算四边形EAPD面积的最大值;
    分两种情况进行讨论即可.
    试题解析:(1)∵在抛物线上,

    解得
    ∴抛物线的解析式为
    (2)过点P作轴交AD于点G,


    ∴直线BE的解析式为
    ∵AD∥BE,设直线AD的解析式为 代入,可得
    ∴直线AD的解析式为
    设则

    ∴当x=1时,PG的值最大,最大值为2,
    由 解得 或

    ∴ 最大值=

    ∵AD∥BE,

    ∴S四边形APDE最大=S△ADP最大+
    (3)①如图3﹣1中,当时,作于T.





    可得
    ②如图3﹣2中,当时,
    当时,
    当时,Q3
    综上所述,满足条件点点Q坐标为或或或

    相关试卷

    2024年山东省济宁市金乡县中考数学三模试卷(含解析):

    这是一份2024年山东省济宁市金乡县中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省济宁市金乡县中考数学一模试卷(含解析):

    这是一份2023年山东省济宁市金乡县中考数学一模试卷(含解析),共21页。试卷主要包含了 分解因式等内容,欢迎下载使用。

    2023年山东省济宁市金乡县中考二模数学试题(含解析):

    这是一份2023年山东省济宁市金乡县中考二模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map