福建省建瓯市徐墩中学2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
2.比1小2的数是( )
A. B. C. D.
3.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则( )
A.m<﹣1 B.m>1 C.m>﹣1 D.m<1
4.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是( )
A.①②③ B.②③④ C.①③④ D.①②④
5.下列各数是不等式组的解是( )
A.0 B. C.2 D.3
6.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为( )
A.40° B.45° C.50° D.55°
7.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1:3 B.1:4 C.1:5 D.1:6
8.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是
A. B. C. D.
9.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
A.12 B.16 C.20 D.24
10.下列各数中,比﹣1大1的是( )
A.0 B.1 C.2 D.﹣3
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:x2﹣4=_____.
12.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是
.
13.若分式方程有增根,则m的值为______.
14.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为
15.函数中,自变量x的取值范围是_____.
16.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.
17.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.
19.(5分)计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
20.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.
(1)求证:;
(2)请探究线段DE,CE的数量关系,并说明理由;
(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.
21.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
(1)求每千克A级别茶叶和B级别茶叶的销售利润;
(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
22.(10分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
(1)求证:方程总有两个不相等的实数根;
(2)写出一个m的值,并求出此时方程的根.
23.(12分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BP•QP.
24.(14分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
2、C
【解析】
1-2=-1,故选C
3、C
【解析】
将关于x的一元二次方程化成标准形式,然后利用Δ>0,即得m的取值范围.
【详解】
因为方程是关于x的一元二次方程方程,所以可得,Δ=4+4m > 0,解得m>﹣1,故选D.
【点睛】
本题熟练掌握一元二次方程的基本概念是本题的解题关键.
4、C
【解析】
解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
当P的横纵坐标相等时PA=PB,故②错误;
∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
综上所述,正确的结论有①③④.故选C.
点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
5、D
【解析】
求出不等式组的解集,判断即可.
【详解】
,
由①得:x>-1,
由②得:x>2,
则不等式组的解集为x>2,即3是不等式组的解,
故选D.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
6、C
【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
【详解】
∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=∠BOC=50°
故选:C.
【点睛】
考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
7、C
【解析】
根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
【详解】
解:连接CE,∵AE∥BC,E为AD中点,
∴ .
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.
【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
8、C
【解析】
根据主视图的定义判断即可.
【详解】
解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
故选:.
【点睛】
此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
9、D
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
【详解】
、分别是、的中点,
是的中位线,
,
菱形的周长.
故选:.
【点睛】
本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
10、A
【解析】
用-1加上1,求出比-1大1的是多少即可.
【详解】
∵-1+1=1,
∴比-1大1的是1.
故选:A.
【点睛】
本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.
二、填空题(共7小题,每小题3分,满分21分)
11、(x+2)(x﹣2)
【解析】【分析】直接利用平方差公式进行因式分解即可.
【详解】x2﹣4
=x2-22
=(x+2)(x﹣2),
故答案为:(x+2)(x﹣2).
【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
12、-2<k<。
【解析】
由图可知,∠AOB=45°,∴直线OA的解析式为y=x,
联立,消掉y得,,
由解得,.
∴当时,抛物线与OA有一个交点,此交点的横坐标为1.
∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为().
∴交点在线段AO上.
当抛物线经过点B(2,0)时,,解得k=-2.
∴要使抛物线与扇形OAB的边界总有两个公共点,实数k的取值范围是-2<k<.
【详解】
请在此输入详解!
13、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x-1),得
x-1(x-1)=-m
∵原方程增根为x=1,
∴把x=1代入整式方程,得m=-1,
故答案为:-1.
【点睛】
本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
14、7 2°或144°
【解析】
∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以
∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°
15、x>1
【解析】
试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足
考点:二次根式、分式有意义的条件
点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.
16、
【解析】
试题分析:,解得r=.
考点:弧长的计算.
17、1
【解析】
估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.
【详解】
因为共摸了200次球,发现有60次摸到黑球,
所以估计摸到黑球的概率为0.3,
所以估计这个口袋中黑球的数量为20×0.3=6(个),
则红球大约有20-6=1个,
故答案为:1.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
三、解答题(共7小题,满分69分)
18、
【解析】
对待求式的分子、分母进行因式分解,并将除法化为乘法可得×-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.
【详解】
原式=×-1
=-1
=
=,
当a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,
原式=.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.
19、1
【解析】
原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.
【详解】
原式=4-1+2-+=1.
【点睛】
此题考查了实数的运算,绝对值,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.
20、(1)证明见解析;(2)DE=CE,理由见解析;(3).
【解析】
试题分析:(1)证明△ABE∽△ACD,从而得出结论;
(2) 先证明∠CDE=∠ACD,从而得出结论;
(3)解直角三角形示得.
试题解析:
(1)∵∠ABE =∠ACD,∠A=∠A,
∴△ABE∽△ACD,
∴;
(2)∵,
∴,
又∵∠A=∠A,
∴△ADE∽△ACB,
∴∠AED =∠ABC,
∵∠AED =∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,
∴∠ACD+∠CDE=∠ABE+∠CBE,
∵∠ABE =∠ACD,
∴∠CDE=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CDE=∠ABE=∠ACD,
∴DE=CE;
(3)∵CD⊥AB,
∴∠ADC=∠BDC=90°,
∴∠A+∠ACD=∠CDE+∠ADE=90°,
∵∠ABE =∠ACD,∠CDE=∠ACD,
∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,
∴AE=DE,BE⊥AC,
∵DE=CE,
∴AE=DE=CE,
∴AB=BC,
∵AD=2,BD=3,
∴BC=AB=AD+BD=5,
在Rt△BDC中,,
在Rt△ADC中,,
∴,
∵∠ADC=∠FEC=90°,
∴,
∴.
21、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
【解析】
试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.
试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.
由题意,
解得,
答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.
由题意w=100a+150(200﹣a)=﹣50a+30000,
∵﹣50<0,
∴w随x的增大而减小,
∴当a取最小值,w有最大值,
∵200﹣a≤2a,
∴a≥,
∴当a=67时,w最小=﹣50×67+30000=26650(元),
此时200﹣67=133kg,
答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.
点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.
22、(1)见解析;(2)x1=1,x2=2
【解析】
(1)根据根的判别式列出关于m的不等式,求解可得;
(2)取m=-2,代入原方程,然后解方程即可.
【详解】
解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
∵(m+2)2+4>1,
∴方程总有两个不相等的实数根;
(2)当m=-2时,由原方程得:x2-4x+2=1.
整理,得(x-1)(x-2)=1,
解得x1=1,x2=2.
【点睛】
本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
23、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.
考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
24、(1);y2=2250x;
(2)甲、乙两个商场的收费相同时,所买商品为6件;
(3)所买商品为5件时,应选择乙商场更优惠.
【解析】
试题分析:(1)由两家商场的优惠方案分别列式整理即可;
(2)由收费相同,列出方程求解即可;
(3)由函数解析式分别求出x=5时的函数值,即可得解
试题解析:(1)当x=1时,y1=3000;
当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.
∴;
y2=3000x(1﹣25%)=2250x,
∴y2=2250x;
(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,
解得x=6,
答:甲、乙两个商场的收费相同时,所买商品为6件;
(3)x=5时,y1=2100x+1=2100×5+1=11400,
y2=2250x=2250×5=11250,
∵11400>11250,
∴所买商品为5件时,应选择乙商场更优惠.
考点:一次函数的应用
湖北省襄阳市徐寨中学2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份湖北省襄阳市徐寨中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022届福建省建瓯市徐墩中学中考数学五模试卷含解析: 这是一份2022届福建省建瓯市徐墩中学中考数学五模试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,函数,若=1,则符合条件的m有等内容,欢迎下载使用。
2021-2022学年福建省永春第一中学中考数学五模试卷含解析: 这是一份2021-2022学年福建省永春第一中学中考数学五模试卷含解析,共21页。