年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    北京市第十四中学2022年中考数学仿真试卷含解析

    北京市第十四中学2022年中考数学仿真试卷含解析第1页
    北京市第十四中学2022年中考数学仿真试卷含解析第2页
    北京市第十四中学2022年中考数学仿真试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市第十四中学2022年中考数学仿真试卷含解析

    展开

    这是一份北京市第十四中学2022年中考数学仿真试卷含解析,共17页。试卷主要包含了的相反数是,下列各式正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有(  )

    A.4个 B.3个 C.2个 D.1个
    2.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )

    A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
    B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
    C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
    D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
    3.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    4.的相反数是(  )
    A. B.- C. D.-
    5.如图所示,如果将一副三角板按如图方式叠放,那么 ∠1 等于( )

    A. B. C. D.
    6.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为(  )

    A.15° B.55° C.65° D.75°
    7.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )

    A.1个 B.2个 C.3个 D.4个
    8.下列各式正确的是( )
    A. B.
    C. D.
    9.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为(  )
    A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109
    10.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )

    A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃
    二、填空题(共7小题,每小题3分,满分21分)
    11.因式分解:x2y-4y3=________.
    12.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.

    13.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.
    14.分解因式: _________.
    15.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
    16.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为   .
    17.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.

    19.(5分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

    (Ⅰ)该教师调查的总人数为   ,图②中的m值为   ;
    (Ⅱ)求样本中分数值的平均数、众数和中位数.
    20.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
    (2)先化简,再求值:÷(2+),其中a= .
    21.(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
    (1)求a、b的值;
    (2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
    (3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.

    22.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
    23.(12分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF

    (1)求证:BF是⊙A的切线.(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
    24.(14分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
    (1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;

    (2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;

    (3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    ①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
    ②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
    ③正确.只要证明DM垂直平分CF,即可证明;
    ④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
    【详解】
    如图,过D作DM∥BE交AC于N.
    ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
    ∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
    ∵AD∥BC,∴△AEF∽△CBF,∴=.
    ∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
    ∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
    ∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
    设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
    故选A.

    【点睛】
    本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
    2、C
    【解析】
    Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可
    【详解】
    ∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,
    ∴DO=BC=2,CO=3,
    ∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;
    或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;
    故选:C.
    【点睛】
    本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化
    3、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    4、B
    【解析】
    ∵+(﹣)=0,
    ∴的相反数是﹣.
    故选B.
    5、B
    【解析】
    解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.

    点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
    6、D
    【解析】
    根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
    【详解】
    解:∵∠CDE=165°,∴∠ADE=15°,
    ∵DE∥AB,∴∠A=∠ADE=15°,
    ∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,
    故选D.
    【点睛】
    本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
    7、B
    【解析】
    解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
    故选B.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
    8、A
    【解析】
    ∵,则B错;,则C;,则D错,故选A.
    9、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:数字338 600 000用科学记数法可简洁表示为3.386×108
    故选:A
    【点睛】
    本题考查科学记数法—表示较大的数.
    10、D
    【解析】
    分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.
    详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.
    故选D.
    点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.

    二、填空题(共7小题,每小题3分,满分21分)
    11、y(x++2y)(x-2y)
    【解析】
    首先提公因式,再利用平方差进行分解即可.
    【详解】
    原式.
    故答案是:y(x+2y)(x-2y).
    【点睛】
    考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
    12、-1≤a≤
    【解析】
    根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
    【详解】
    解:反比例函数经过点A和点C.
    当反比例函数经过点A时,即=3,
    解得:a=±(负根舍去);
    当反比例函数经过点C时,即=3,
    解得:a=1±(负根舍去),
    则-1≤a≤.
    故答案为: -1≤a≤.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    13、 .
    【解析】
    试题分析:696000=6.96×1,故答案为6.96×1.
    考点:科学记数法—表示较大的数.
    14、
    【解析】
    先提取公因式b,再利用完全平方公式进行二次分解.
    解答:解:a1b-1ab+b,
    =b(a1-1a+1),…(提取公因式)
    =b(a-1)1.…(完全平方公式)
    15、1
    【解析】
    根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
    【详解】
    ∵点(a,b)在一次函数y=2x-1的图象上,
    ∴b=2a-1,
    ∴2a-b=1,
    ∴4a-2b=6,
    ∴4a-2b-1=6-1=1,
    故答案为:1.
    【点睛】
    本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
    16、y=(x﹣3)2+2
    【解析】
    根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.
    【详解】
    解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).
    向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,
    故答案为:y=(x﹣3)2+2.
    【点睛】
    此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
    17、1或5.
    【解析】
    小正方形的高不变,根据面积即可求出小正方形平移的距离.
    【详解】
    解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,
    ①如图,小正方形平移距离为1厘米;

    ②如图,小正方形平移距离为4+1=5厘米.

    故答案为1或5,
    【点睛】
    此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.

    三、解答题(共7小题,满分69分)
    18、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
    【解析】
    解:(1)
    (2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
    (3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)
    19、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.
    【解析】
    (1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;
    (2)根据平均数、众数和中位数的定义求解即可.
    【详解】
    (Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),
    m%=×100%=40%,即m=40,
    故答案为:25、40;
    (Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,
    则样本分知的平均数为(分),
    众数为75分,中位数为第13个数据,即75分.
    【点睛】
    理解两幅统计图中各数据的含义及其对应关系是解题关键.
    20、(1)5+;(2)
    【解析】
    试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;
    (2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.
    试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
    (2)原式==,
    当a=时,原式==.
    21、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    【解析】
    试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
    试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
    ∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
    ∴2a+1=0, ∴a=﹣;
    (2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
    由图象知,点Q在点A,B之间, ∴﹣1<n<2
    (3)、解:如图,

    ∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
    ∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
    ②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
    ③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
    ∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
    ∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
    即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
    点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
    22、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【解析】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.
    【详解】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得

    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得

    解得:,
    因为a是整数,
    所以a=6,7,8;
    则(10﹣a)=4,3,2;
    三种方案:
    ①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    23、(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE为菱形;证明见解析;
    【解析】
    分析(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;
    (2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
    详解:(1)证明:∵EF∥AB
    ∴∠FAB=∠EFA,∠CAB=∠E
    ∵AE=AF
    ∴∠EFA =∠E
    ∴∠FAB=∠CAB
    ∵AC=AF,AB=AB
    ∴△ABC≌△ABF
    ∴∠AFB=∠ACB=90°, ∴BF是⊙A的切线.
    (2)当∠CAB=60°时,四边形ADFE为菱形.
    理由:∵EF∥AB
    ∴∠E=∠CAB=60°
    ∵AE=AF
    ∴△AEF是等边三角形
    ∴AE=EF,
    ∵AE=AD
    ∴EF=AD
    ∴四边形ADFE是平行四边形
    ∵AE=EF
    ∴平行四边形ADFE为菱形.
    点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.
    24、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
    【解析】
    (1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
    (2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
    (3)本问的抛物线解析式不止一个,求出其中一个.
    【详解】
    解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
    当点A在x轴正半轴、点B在y轴负半轴上时,
    ∴AO=1,BO=1,
    ∴正方形ABCD的边长为 ,
    当点A在x轴负半轴、点B在y轴正半轴上时,
    设正方形的边长为a,得3a=,
    ∴ ,
    所以伴侣正方形的边长为或;
    (2)作DE、CF分别垂直于x、y轴,

    知△ADE≌△BAO≌△CBF,
    此时,m<2,DE=OA=BF=m
    OB=CF=AE=2﹣m
    ∴OF=BF+OB=2
    ∴C点坐标为(2﹣m,2),
    ∴2m=2(2﹣m)
    解得m=1,
    反比例函数的解析式为y= ,
    (3)根据题意画出图形,如图所示:

    过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
    ∴△CED≌△DGB≌△AOB≌△AFC,
    ∵C(3,4),即CF=4,OF=3,
    ∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
    则D坐标为(﹣1,3);
    设过D与C的抛物线的解析式为:y=ax2+b,
    把D和C的坐标代入得: ,
    解得 ,
    ∴满足题意的抛物线的解析式为y=x2+ ;
    同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
    对应的抛物线分别为 ; ;,
    所求的任何抛物线的伴侣正方形个数为偶数.
    【点睛】
    本题考查了二次函数的综合题.灵活运用相关知识是解题关键.

    相关试卷

    北京市八十中学2022年中考数学仿真试卷含解析:

    这是一份北京市八十中学2022年中考数学仿真试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,已知,下列各式正确的是,函数的图像位于等内容,欢迎下载使用。

    2022年天津市南开中学中考数学仿真试卷含解析:

    这是一份2022年天津市南开中学中考数学仿真试卷含解析,共19页。

    2022年山西省高平市特立中学中考数学仿真试卷含解析:

    这是一份2022年山西省高平市特立中学中考数学仿真试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列代数运算正确的是,若x>y,则下列式子错误的是,点P,下列各式计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map