统考版高中数学(理)一轮复习第十一章统计与统计案例导学案+PPT课件
展开
这是一份统考版高中数学(理)一轮复习第十一章统计与统计案例导学案+PPT课件,文件包含111pptx、112pptx、111DOCX、112DOCX等4份课件配套教学资源,其中PPT共95页, 欢迎下载使用。
·最新考纲·1.会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).3.了解独立性检验的思想、方法,并能初步应用独立性检验的思想方法解决一些简单的实际问题.4.通过典型案例了解回归分析的思想方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.
·考向预测·考情分析:两个变量线性相关的判断及应用,回归直线方程的求法及应用,利用2×2列联表判断两个变量的相关关系将是高考考查的热点,题型将是选择与填空题或者在解答题中综合考查.学科素养:通过线性回归分析及独立性检验的应用考查数学建模、数据分析、数学运算的核心素养.
一、必记3个知识点1.变量间的相关关系常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.
3.[选修2-3·P86例2改编]两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是( )A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25
解析:在两个变量y与x的回归模型中,它们的相关指数R2越接近1,拟合效果越好,在四个选项中A的相关指数最大,所以拟合效果最好的是模型1.
解析:由于回归直线的斜率为正值,故y与x具有正的线性相关关系,选项①中的结论正确;回归直线过样本点的中心,选项②中的结论正确;根据回归直线斜率的意义易知选项③中的结论正确;由于回归分析得出的是估计值,故选项④中的结论不正确.
(四)走进高考6.[2020·全国卷Ⅰ]某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到下面的散点图: 由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )A.y=a+bx B.y=a+bx2 C.y=a+bex D.y=a+b ln x
解析:观察散点图可知,散点图用光滑曲线连接起来比较接近对数型函数的图象.
考点一 相关关系的判断 1.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断( ) A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关
解析:由散点图可得两组数据均线性相关,且图①的线性回归方程斜率为负,图②的线性回归方程斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.
2.某公司在2019年上半年的月收入x(单位:万元)与月支出y(单位:万元)的统计资料如表所示: 根据统计资料,则( )A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系
解析:正相关指的是y随x的增大而增大,负相关指的是y随x的增大而减小,故不正确的为①④.
考点二 回归分析 角度1 线性回归方程及其应用[例1] 某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动.活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为x元.若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这200万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取1 000名,每名用户赠送1 000元的红包.为了合理确定保费x的值,该手机厂商进行了问卷调查,统计后得到下表(其中y表示保费为x元时愿意购买该“手机碎屏险”的用户比例):
(1)根据上面的数据求出y关于x的回归直线方程;(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为0.5%.已知更换一次该型号手机屏幕的费用为800元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于70万元,能否把保费x定为5元?参考数据:表中x的5个值从左到右分别记为x1,x2,x3,x4,x5,相应的y值分别记为y1,y2,y3,y4,y5,
角度2 相关系数及其应用[例2] [2020·全国卷Ⅱ]某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
解析: (3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.
反思感悟) 回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.
角度3 非线性回归方程[例3] 某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次,统计数据如下表所示:
(1)根据散点图判断,在推广期内,扫码支付的人次y关于活动推出天数x的回归方程适合用y=c·dx来表示,求出该回归方程,并预测活动推出第8天使用扫码支付的人次;
2.某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.
考点三 独立性检验 [应用性、创新性] [例4] [2021·全国甲卷]甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
[2022·湖南长沙模拟]为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查,已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如表所示. (1)求m,n的值;(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?附:
相关课件
这是一份高中数学高考2018高考数学(理)大一轮复习课件:第十章 统计与统计案例 第二节 统计案例,共51页。
这是一份高中数学高考72第十一章 算法、统计与统计案例 11 4 变量的相关性、统计案例课件PPT,共60页。PPT课件主要包含了内容索引,课时作业,基础知识自主学习,题型分类深度剖析,题型二回归分析,题型三独立性检验等内容,欢迎下载使用。
这是一份统考版高中数学(理)一轮复习第九章平面解析几何导学案+PPT课件,文件包含993pptx、95pptx、96pptx、97pptx、92pptx、94pptx、91pptx、93pptx、98pptx、992pptx、991pptx、96DOCX、95docx、993DOCX、97DOCX、92DOCX、94DOCX、91docx、93docx、99pptx、98DOCX、992docx、991docx、99docx等24份课件配套教学资源,其中PPT共463页, 欢迎下载使用。