人教版数学八年级上册专项培优练习一《三角形认识》(含答案)
展开人教版数学八年级上册专项培优练习一
《三角形认识》
一 、选择题
1.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为( )
A.2 B.3 C.5 D.13
2.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )
A.14 B.15 C.16 D.17
3.已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为( ).
A.2 B.3 C.5 D.13
4.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形( ).
A.一定有一个内角为45° B.一定有一个内角为60°
C.一定是直角三角形 D.一定是钝角三角形
5.如图,把一个的直角三角尺的直角顶点放在直尺的一边上,已知∠A=30°,则∠1+∠2=( )
A.120° B.150° C.135° D.130°
6.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )
A.2个 B.3个 C.4个 D.5个
7.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,那么△A2B2C2的面积是( )
A.7 B.14 C.49 D.50
8.已知△ABC的边长分别为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是( )
A.2a B.2b-2c C.2a+3b D.-2b
9.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1, ∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4 的角平分线交于点D5,则∠BD5C的度数是 ( )
A.24° B.25° C.30° D.36°
10.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )
A.180° B.210° C.360° D.270°
11.如图中有四条互相不平行的直线L1.L2.L3.L4所截出的七个角.关于这七个角的度数关系,下列何者正确( )
A.∠2=∠4+∠7 B.∠3=∠1+∠6
C.∠1+∠4+∠6=180° D.∠2+∠3+∠5=360°
12.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )
A.γ=2α+β B.γ=α+2β C.γ=α+β D.γ=180°﹣α﹣β
二 、填空题
13.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是
14.对于一个锐角三角形,甲测得边长分别是5cm,6cm,11cm,乙测得三个内角分别为33°,49°,78°,丙测得三个内角分别为33°,59°,88°,其中只有一个人测得结果是正确的,此人是 .
15.如图,是某建筑工地上的人字架.已知这个人字架的夹角∠1=120°,∠3-∠2度数为_______.
16.如图,D,E分别是△ABC边AB,BC上的点,AD2BD,BECE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1-S2的值为 .
17.如图,已知△ABC中,AD是BC边上的高,AE是∠BAC的平分线,若∠B=42°,∠C=70°,则∠DAE= °.
18.如图,把△ABC沿EF对折,折叠后的图形如图.若∠A=60°,∠1=96°,则∠2= .
三 、解答题
19.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a
(1)用含a,b的式子表示这个三角形的周长,并化简;
(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.
20.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.
21.如图,在△ABC 中,BD:DC=3:1,AE:CE=1:2,S△ABC=48,求四边形ODCE 的面积.
22.如图,用钉子把木棒AB、BC和CD分别在端点B、C处连接起来,用橡皮筋把AD连接起来,设橡皮筋AD的长是x,
(1)若AB=5,CD=3,BC=11,试求x的最大值和最小值;
(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?
23.如图1,在△OBC中,A是BO延长线上的一点.
(1)∠B=32°,∠C=46°,则∠AOC= °,Q是BC边上一点,连接AQ交OC于点P,如图2,若∠A=18°,则∠OPQ= °,猜测:∠A+∠B+∠C与∠OPQ的大小关系是 .
(2)将图2中的CO延长到点D,AQ延长到点E,连接DE,得到图3,则∠AQB等于图中哪三个角的和?并说明理由.
(3)求图3中∠A+∠D+∠B+∠E+∠C的度数.
24.如图,∠EOF=90°,点A,B分别在射线OE,OF上移动,连结AB并延长至点D,∠DBO的平分线与∠OAB的平分线交于点C,试问:∠ACB的度数是否随点A,B的移动而发生变化?如果保持不变,请说明理由;如果随点A,B的移动而发生变化,请给出变化的范围.
25.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.
(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;
(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.
①求证:BF∥OD;
②若∠F=40º,求∠BAC的度数.
参考答案
1.D
2.B
3.A
4.A
5.B
6.B
7.C
8.B
9.B
10.B
11.C
12.A
13.答案为:a>5;
14.答案为:丙
15.答案为:60°.
16.答案为:1
17.答案为:14°
18.答案为:24°.
19.解:(1)∵三角形的第一条边长为2a+5b,
第二条边比第一条边长3a﹣2b,
第三条边比第二条边短3a,
∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,
∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;
(2)∵a,b满足|a﹣5|+(b﹣3)2=0,
∴a﹣5=0,b﹣3=0,
∴a=5,b=3,
∴这个三角形的周长=9×5+11×3=45+33=78.
答:这个三角形的周长是78.
20.证明:(1)∵∠ACB=90゜,CD⊥AB于D,
∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,
∴∠ACD=∠B;
(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,
同理在Rt△AED中,∠AED=90°﹣∠DAE.
又∵AF平分∠CAB,
∴∠CAF=∠DAE,
∴∠AED=∠CFE,
又∵∠CEF=∠AED,
∴∠CEF=∠CFE.
21.解:连接CO,设S△COE=x,S△COD=y,
∵AE:CE=1:2,
22.解:(1)最大是5+3+11=19;最小是11-3-5=3;
(2)由(1)得橡皮筋长x的取值范围为:3<x<19.
23.解:(1)78,96,∠A+∠B+∠C=∠OPQ.
(2)∠AQB=∠C+∠D+∠E.
理由:∵∠EPC=∠D+∠E,∠AQB=∠C+∠EPC,
∴∠AQB=∠C+∠D+∠E.
(3)∵∠AQC=∠A+∠B,∠QPC=∠D+∠E,
又∵∠AQC+∠QPC+∠C=180°,
∴∠A+∠B+∠D+∠E+∠C=180°,
即∠A+∠D+∠B+∠E+∠C=180°.
24.解:∠ACB的度数不随点A,B的移动发生变化.理由如下:
∵BC,AC分别平分∠DBO,∠BAO,
∴∠DBC=∠DBO,
∠BAC=∠BAO.
∵∠DBO+∠OBA=180°,∠OBA+∠BAO+∠AOB=180°,
∴∠DBO=∠BAO+∠AOB,
∴∠DBO-∠BAO=∠AOB=90°.
∵∠DBC+∠ABC=180°,∠ABC+∠ACB+∠BAC=180°,
∴∠DBC=∠BAC+∠ACB,
∴∠DBO=∠BAO+∠ACB,
∴∠ACB=(∠DBO-∠BAO)=∠AOB=45°.
25.(1)∠AOC=∠ODC,
理由:∵三个内角的平分线交于点O,
∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°-∠ABC),
∵∠OBC=∠ABC,
∴∠AOC=180°-(∠OAC+∠OCA)=90°+∠ABC=90°+∠OBC,
∵OD⊥OB,
∴∠BOD=90°,
∴∠ODC=90°+∠OBD,
∴∠AOC=∠ODC;
(2)①∵BF平分∠ABE,
∴∠EBF=∠ABE=(180°-∠ABC)=90°-∠DBO,
∵∠ODB=90°-∠OBD,
∴∠FBE=∠ODB,
∴BF∥OD;
②∵BF平分∠ABE,
∴∠FBE=∠ABE=(∠BAC+∠ACB),
∵三个内角的平分线交于点O,
∴∠FCB=∠ACB,
∵∠F=∠FBE-∠BCF=(∠BAC+∠ACB)-∠ACB=∠BAC,
∵∠F=40°,
∴∠BAC=2∠F=80°.
人教版数学八年级上册专项培优练习四《全等三角形证明题专练》(含答案): 这是一份人教版数学八年级上册专项培优练习四《全等三角形证明题专练》(含答案),共14页。
人教版数学八年级上册专项培优练习十《分式的运算》(含答案): 这是一份人教版数学八年级上册专项培优练习十《分式的运算》(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学八年级上册专项培优练习七《等边三角形》(含答案): 这是一份人教版数学八年级上册专项培优练习七《等边三角形》(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。