数学九年级上册1.4 二次函数的应用精品一课一练
展开浙教版 九年级上册 第一章 二次函数与一元二次方程
测试卷(一)
一、选择题:(30分)
1、抛物线与坐标轴的交点个数为( )
A.0 B.1 C.2 D.3
2、已知直线过一、二、三象限,则直线与抛物线的交点个数为( )
A.0个 B.1个 C.2个 D.1个或2个
3、如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为( )
A.﹣4 B.﹣2 C.1 D.3
4、函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )
A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2
5、已知坐标平面上有二次函数y=﹣(x+6)2+5的图形,函数图形与x轴相交于(a,0)、(b,0)两点,其中a<b.今将此函数图形往上平移,平移后函数图形与x轴相交于(c,0)、(d,0)两点,其中c<d,判断下列叙述何者正确?( )
A.(a+b)=(c+d),(b﹣a)<(d﹣c)
B.(a+b)=(c+d),(b﹣a)>(d﹣c)
C.(a+b)<(c+d),(b﹣a)<(d﹣c)
D.(a+b)<(c+d),(b﹣a)>(d﹣c)
6、已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有( )
x | … | ﹣3 | ﹣2 | ﹣1 | 1 | 2 | … |
y | … | 1.875 | 3 | m | 1.875 | 0 | … |
A.①④ B.②③ C.③④ D.②④
7、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C,对称轴为x=﹣1.下列结论正确的是( )
A.abc<0 B.3a+c=0 C.4a+2b+c>0 D.2a+b>0
8、已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是( )
A.1 B. C.2 D.4
9、已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是( )
A.1 B. C.2 D.4
10、已知的图象如图所示,对称轴为直线,若,是一元二次方程的两个根,且,,则下列说法正确的是( )
A. B. C. D.
二、填空题:(24分)
11.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是_____.
12、把二次函数y=x2+4x+m的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件: .
.
13、若抛物线y=x2﹣2x﹣m与x轴有两个交点,则m的取值范围是 .
14、抛物线y=ax2+bx+c(a,b,c是常数)的顶点是(﹣2,3),与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间.下列四个结论:①abc<0;②一元二次方程ax2﹣bx+c=0的一个根在0和1之间;③点P1(﹣7,y1),P2(π,y2)在抛物线上,则y1<y2;④b2+2b>4ac.其中正确的结论是 (填写序号).
15、对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是 .
16、若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_____.
三、解答题:(66分)
17、(6分)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).
(1)求m的值;
(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.
18、(8分)已知二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,求:
(1)点A、B、C的坐标; (2)△ABC的面积.
19、(8分)、已知关于x的一元二次方程x2+x﹣m=0.
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.
20、(8分)、如图,开口向下的抛物线与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物线上的一点.
(1)求该抛物线所对应的函数解析式;
(2)设四边形CABP的面积为S,求S的最大值.
.
21、(10分)、某班数学兴趣小组对函数y=|x2﹣2x|的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量x的取值范围取足全体实数,x与y的几组对应值列表如下:其中m= .
x | …… | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | …… |
y | …… | 3 | m | 0 | 0.75 | 1 | 0.75 | 0 | 1.25 | 3 | …… |
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出函数的一条性质 ;
(4)进一步探究函数图象解决问题:
①方程|x2﹣2x|=有 个实数根;
②在(2)问的平面直角坐标系中画出直线y=﹣x+1,根据图象写出方程|x2﹣2x|=﹣x+1的一个正数根约为 .(精确到0.1)
21、(10分)、已知函数y=y1•y2,其中y1=x+1,y2=x﹣1,请对该函数及其图象进行如下探究:
解析式探究:根据给定的条件,可以确定出该函数的解析式为: ;
函数图象探究:①根据解析式,完成下表:
x | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | ﹣9 | ﹣ | m | n | ﹣1 | ﹣ | … |
m= n= ;
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出当x≤0时的函数图象;
结合画出的函数图象,解决问题:
①若A(x1,y1)、B(x2,y2)为图象上的两点,满足x1<x2;则y1 y2(用<、=、>填空);
②写出关于x的方程y1•y2=﹣x+3的近似解(精确到0.1).
22、(12分)二次函数y=x2+bx的对称轴为直线x=﹣1.
(1)求二次函数y=x2+bx的解析式;
(2)若关于x的一元二次方程x2+bx+t=0(t为实数)在﹣4<x<3的范围内有解,则t的取值范围 .
23、(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:无论k为何实数,方程总有两个不相等的实数根;
(2)若抛物线y=x2﹣(2k+1)x+k2+k与x轴相交于A、B两点,当OA+OB=5时,求k的值.
数学4.6 整式的加减优秀当堂达标检测题: 这是一份数学4.6 整式的加减优秀当堂达标检测题,文件包含B卷docx、B原卷docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
初中数学浙教版八年级上册2.1 图形的轴对称精品同步测试题: 这是一份初中数学浙教版八年级上册2.1 图形的轴对称精品同步测试题,文件包含答案docx、原卷docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
数学2.1 图形的轴对称精品同步训练题: 这是一份数学2.1 图形的轴对称精品同步训练题,文件包含答案docx、原卷docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。