人教版数学九年级上册专项培优练习九《二次函数实际应用》(含答案)
展开人教版数学九年级上册专项培优练习九
《二次函数实际应用》
一 、选择题
1.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为( )
A.y=36(1﹣x) B.y=36(1+x) C.y=18(1﹣x)2 D.y=18(1+x2)
2.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是( )
A.y=﹣x2+5x B.y=﹣x2+10x C.y=x2+5x D.y=x2+10x
3.某工厂第一年的利润为20万元,第三年的利润为y万元.设该公司利润的平均年增长率为x,则y关于x的二次函数的表达式为( ).
A.y=20(1﹣x)2 B.y=20(1+x)2 C.y=(1﹣x)2+2 D.y=(1﹣x)2﹣20
4.某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3 m,此时距喷水管的水平距离为 m,如图所示,这个喷泉喷出水流轨迹的函数解析式是( )
A.y=-3(x- )2+3 B.y=-3(x+ )2+3 C.y=-12(x- )2+3 D.y=-12(x+ )2+3
5.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后价格为y元,原价为a元,则y关于x的二次函数表达式为( ).
A.y=2a(x-1) B.y=2a(1-x) C.y=a(1-x2) D.y=a(1-x)2
6.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )
A.y=﹣2x2 B.y=2x2 C.y=﹣x2 D.y=x2
7.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为( )
A.y=5-x B.y=5-x2 C.y=25-x D.y=25-x2
8.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为( )
A.y=-10x2-560x+7 350
B.y=-10x2+560x-7 350
C.y=-10x2+350x
D.y=-10x2+350x-7 350
9.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE∥x轴,AB=4 cm,最低点C在x轴上,高CH=1 cm,BD=2 cm,则右轮廓DFE所在抛物线的解析式为( )
A.y=(x+3)2 B.y=(x-3)2 C.y=-(x+3)2 D.y=-(x-3)2
10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是( )
A.1月、2月、3月 B.2月、3月、4月
C.1月、2月、12月 D.1月、11月、12月
11.已知学校航模组设计制作的火箭的升空高度 h(m)与飞行时间 t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是( )
A.点火后 9s 和点火后 13s 的升空高度相同
B.点火后 24s 火箭落于地面
C.点火后 10s 的升空高度为 139m
D.火箭升空的最大高度为 145m
12.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
h | 0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:
①足球距离地面的最大高度为20 m;
②足球飞行路线的对称轴是直线t=;
③足球被踢出9 s时落地;
④足球被踢出1.5 s时,距离地面的高度是11 m.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
二 、填空题
13.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为 (不要求写出自变量x的取值范围).
14.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm,则这样的长方形中y与x的关系可以写为 .
15.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为 .
16.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是 .
17.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图),已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为 m2.
18.游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(单位:万元),且y=ax2+bx,若维修保养费用第1个月为2万元,第2个月为4万元;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(单位:万元),g也是关于x的二次函数.
(1)y关于x的解析式 ;
(2)纯收益g关于x的解析式 ;
(3)设施开放 个月后,游乐场纯收益达到最大? 个月后,能收回投资?
三 、解答题
19.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
| 进价(元/只) | 售价(元/只) |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)如何进货,进货款恰好为46000元?
(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?
20.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?
21.如图,隧道的截图由抛物线和长方形构成,长方形的长是8 m,宽是2 m,抛物线可以用y=-x2+4表示.一辆货运卡车高4 m,宽2 m,它能通过该隧道吗?
22.如图,在△ABC中,∠B=90°,AB=12 cm,BC=24 cm,动点P从点A开始沿边AB向B以2 cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 cm/s的速度移动(不与点C重合).如果P、Q分别从A.B同时出发,设运动的时间为x s,四边形APQC的面积为y cm2.
(1)求y与x之间的函数关系式;
(2)求自变量x的取值范围;
(3)四边形APQC的面积能否等于172 cm2.若能,求出运动的时间;若不能,说明理由.
23.某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
x(十万元) | 0 | 1 | 2 |
y | 1 | 1.5 | 1.8 |
(1)求y与x的函数关系式;
(2)如果把利润看着销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);
(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?
24.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.
(1)已知某天售出该化工原料40千克,则当天的销售单价为 元/千克;
(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.
①求这种化工原料的进价;
②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?
参考答案
1.C
2.A
3.B
4.C
5.D
6.C
7.D
8.B
9.B
10.C
11.D
12.B
13.答案为:y=﹣x2+15x.
14.答案为:y=(12﹣x)x.
15.答案为:y=-x2.
16.答案为:y=10(1+x)2
17.答案为:144.
18.答案为:(1)y=x2+x;
(2)纯收益g=33x-150-(x2+x)=-x2+32x-150
(3)g=-x2+32x-150=-(x-16)2+106,
即设施开放16个月后游乐场的纯收益达到最大.
又在0<x≤16时,g随x的增大而增大,
当x≤5时,g<0;而当x=6时,g>0,所以6个月后能收回投资.
19.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.
∴购进乙型节能灯1200﹣400=800(只).
答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;
(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y元,
由题意得y=(30﹣25)a+(60﹣45)(1200﹣a),
y=﹣10a+18000.
∵商场销售完节能灯时获利最多且不超过进货价的30%,
∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,
∴a≥450.
∵y=﹣10a+18000,
∴k=﹣10<0,
∴y随a的增大而减小,
∴a=450时,y最大=13500元.
∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.
20.解:设直角三角形的一直角边长为x,则另一直角边长为(20-x),其面积为y,则
y=x(20-x)=-x2+10x=-(x-10)2+50.
∵-<0,∴当x=10时,面积y值取最大,y最大=50.
21.解:把y=4-2=2代入y=-x2+4,
得2=-x2+4,解得x=±2.
∴此时可通过物体的宽度为2-(-2)=4>2,
∴它能通过该隧道.
22.解:(1)由题意可知,
AP=2x,BQ=4x,则
y=BC×AB﹣BQ×BP
=×24×12﹣×4x×(12﹣2x),
即y=4x2﹣24x+144.
(2)∵0<AP<AB,0<BQ<BC,
∴0<x<6.
(3)不能.理由:
当y=172时,4x2﹣24x+144=172.
解得x1=7,x2=﹣1.
又∵0<x<6,
∴四边形APQC的面积不能等于172 cm2.
23.解:(1)y=0.1x2+0.6x+1;
(2)S=3×100y-2×100y-x=-10x2+59x+100 ;
(3)x=2.95时利润最大,最大利润为187.025(十万元).
24.解:(1)设某天售出该化工原料40千克时的销售单价为x元/千克,
(60﹣x)×2+20=40,解得,x=50,
故答案为:50;
(2)①设这种化工原料的进价为a元/千克,
当销售价为46元/千克时,当天的销量为:20+(60﹣46)×2=48(千克),
则(46﹣a)×48=108+90×2,
解得,a=40,
即这种化工原料的进价为40元/千克;
②设公司某天的销售单价为x元/千克,每天的收入为y元,
则y=(x﹣40)[20+2(60﹣x)]=﹣2(x﹣55)2+450,
∴当x=55时,公司每天的收入最多,最多收入450元,
设公司需要t天还清借款,
则t≥10000,解得,t≥,
∵t为整数,∴t=62.
即公司至少需62天才能还清借款.
初中数学人教版九年级上册22.3 实际问题与二次函数精品巩固练习: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数精品巩固练习,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册22.3 实际问题与二次函数测试题: 这是一份人教版九年级上册22.3 实际问题与二次函数测试题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学九年级上册专项培优练习五《二次函数图象性质》(含答案): 这是一份人教版数学九年级上册专项培优练习五《二次函数图象性质》(含答案),共9页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。