人教版数学九年级上册专项培优练习十六《切线的性质与判定证明题专练》(含答案)
展开人教版数学九年级上册专项培优练习十六
《切线的性质与判定证明题专练》
1.已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):___________________或者__________________;
(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.
2.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求证:直线AD是⊙O的切线;
(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.
3.如图,⊙O是△ABC的外接圆,∠ABC=45°,AD是⊙O的切线交BC的延长线于D,AB交OC于E.
(1)求证:AD∥OC;
(2)若AE=2,CE=2.求⊙O的半径和线段BE的长.
4.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE⊥AB,垂足为点E,射线EP交于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若∠CAB=30°,当F是的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?说明理由.
5.如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是 弧DE的中点.
(1)求证:直线l是⊙O的切线;
(2)若PA=6,求PB的长
6.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.
(1)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;
(2)如图2,当点F是CD的中点时,求△CDE的面积.
7.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若∠P=35°,求∠ABP的度数;
(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.
8.如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.
(1)求证:DE是⊙O的切线;
(2)若AB=10,求线段OG的长.
9.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
10.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若CF=2,DF=4,求⊙O的直径的长.
11.如图(1),在△ABC中,∠ACB=90°,以AB为直径作⊙O;过点C作直线CD交AB的延长线于点D,且BD=OB,CD=CA.
(1)求证:CD是⊙O的切线.
(2)如图(2),过点C作CE⊥AB于点E,若⊙O的半径为8,∠A=30°,求线段BE.
12.已知:△ABC内接于⊙O,过点A作直线EF.
(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):
① ;② ;③ .
(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.
(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.
13.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)BD=DC吗?说明理由;
(2)求∠BOP的度数;
(3)求证:CP是⊙O的切线.
14.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线
BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;
(3)求证:CD=HF.
15.如图,有两条公路OM,ON相交成30°角,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿公路ON方向行驶时,在以点P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.已知重型运输卡车P沿公路ON方向行驶的速度为18千米/时.
(1)求对学校A的噪声影响最大时,卡车P与学校A的距离;
(2)求卡车P沿公路ON方向行驶一次给学校A带来噪声影响的时间.
参考答案
1.解:(1) ∠BAE=90°;∠EAC=∠ABC
(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,
∴∠M+∠CAM=∠B+∠CAM=90°,
∵∠CAE=∠B,
∴∠CAM+∠CAE=90°,
∴AE⊥AM,
∵AM为直径,
∴EF是⊙O的切线
2.解:(1)证明:∵∠AEC=30°,
∴∠ABC=30°.
∵AB=AD,
∴∠D=∠ABC=30°,∴∠BAD=120°,
连接OA,∴OA=OB,
∴∠OAB=∠ABC=30°,
∴∠OAD=∠BAD-∠OAB=90°,
∴OA⊥AD.
∵点A在⊙O上,
∴直线AD是⊙O的切线.
(2)∵∠AEC=30°,
∴∠AOC=60°.
∵BC⊥AE于M,
∴AE=2AM,∠OMA=90°.
在Rt△AOM中,AM==2,
∴AE=2AM=4.
3.解:
4. (1)证明:连结OC.
∵∠OAC=∠ACO,PE⊥OE,OC⊥CD,
∴∠APE=∠PCD.
∵∠APE=∠DPC,
∴∠DPC=∠PCD,
∴DC=DP.
(2)解:以A、O、C、F为顶点的四边形是菱形.
理由:连结BC、OF、AF.
∵∠CAB=30°∴∠B=60°,
∴△OBC为等边三角形,
∴∠AOC=120°.
∵F是的中点,
∴∠AOF=∠COF=60°,
∴△AOF与△COF均为等边三角形,
∴AF=AO=OC=CF,
∴四边形AOCF为菱形.
5.(1)证明: 连接DE,OA.
∵PD是直径, ∴∠DEP=90°,
∵PB⊥FB, ∴∠DEP=∠FBP, ∴DE∥BF,
∵ , ∴OA⊥DE, ∴OA⊥BF,
∴直线l是⊙O的切线.
(2)作OH⊥PA于H.
∵OA=OP,OH⊥PA, ∴AH=PH=3,
∵OA∥PB, ∴∠OAH=∠APB,
∵∠AHO=∠ABP=90°, ∴△AOH∽△PAB,
6.解:(1)如图1中,连接OD.
∵∠C=45°,
∴∠AOD=2∠C=90°,
∵ED∥AB,
∴∠AOD+∠EDO=180°,
∴∠EDO=90°,
∴ED⊥OD,
∴ED是⊙O切线.
(2)如图2中,连接BC,
∵CF=DF,
∴AF⊥CD,
∴AC=AD,
∴∠ACD=∠ADC,
∵AB∥ED,
∴ED⊥DC,
∴∠EDC=90°,
在RT△ACB中,∵∠ACB=90°,∠CAB=30°,AB=2,
∴BC=1,AC=,
∴CF=AC=,CD=2CF=,
在RT△ECD中,
∵∠EDC=90°,CD=,∠E=∠CAB=30°,
∴EC=2CD=2,ED=3,
∴S△ECD=•ED•CD=.
7.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,
∴AB⊥AP,
∴∠BAP=90°;
又∵∠P=35°,
∴∠AB=90°﹣35°=55°.
(2)证明:如图,连接OC,OD、AC.
∵AB是⊙O的直径,
∴∠ACB=90°(直径所对的圆周角是直角),
∴∠ACP=90°;
又∵D为AP的中点,
∴AD=CD(直角三角形斜边上的中线等于斜边的一半);
在△OAD和△OCD中,
,
∴△OAD≌△OCD(SSS),
∴∠OAD=∠OCD(全等三角形的对应角相等);
又∵AP是⊙O的切线,A是切点,
∴AB⊥AP,
∴∠OAD=90°,
∴∠OCD=90°,即直线CD是⊙O的切线.
8.解:(1)连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
由翻折得:∠OAD=∠EAD,∠E=∠AHD=90°,
∴∠ODA=∠EAD,
∴OD∥AE,
∴∠E+∠ODE=180°,
∴∠ODE=90°,
∴DE与⊙O相切;
(2)∵将△AHD沿AD翻折得到△AED,
∴∠OAD=∠EAD=30°,
∴∠OAC=60°,
∵OA=OD,
∴△OAC是等边三角形,
∴∠AOG=60°,
∵∠OAD=30°,
∴∠AGO=90°,
∴OG=2.5.
9.(1)证明:连接OB,如图所示:
∵E是弦BD的中点,
∴BE=DE,OE⊥BD,=,
∴∠BOE=∠A,∠OBE+∠BOE=90°,
∵∠DBC=∠A,
∴∠BOE=∠DBC,
∴∠OBE+∠DBC=90°,
∴∠OBC=90°,
即BC⊥OB,
∴BC是⊙O的切线;
(2)解:∵OB=6,BC=8,BC⊥OB,
∴OC==10,
∵△OBC的面积=OC•BE=OB•BC,
∴BE===4.8,
∴BD=2BE=9.6,
即弦BD的长为9.6.
10.解:(1)证明:如图,连接OD,CD.
∵AC是⊙O的直径,∴∠ADC=90°,
∴∠BDC=90°.
又∵E为BC的中点,
∴DE=BC=CE,
∴∠EDC=∠ECD.
∵OD=OC,∴∠ODC=∠OCD,
∴∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°,
∴∠ODE=90°,即OD⊥DE.
又∵OD是⊙O的半径,∴DE是⊙O的切线.
(2)设⊙O的半径为x.在Rt△ODF中,根据勾股定理,得OD2+DF2=OF2,
即x2+42=(x+2)2,解得x=3.
∴⊙O的直径的长为6.
11.(1)证明:如图1,连结OC,
∵点O为直角三角形斜边AB的中点,
∴OC=OA=OB.
∴点C在⊙O上,
∵BD=OB,
∴AB=DO,
∵CD=CA,
∴∠A=∠D,
∴△ACB≌△DCO,
∴∠DCO=∠ACB=90°,
∴CD是⊙O的切线;
(2)解:如图2,在Rt△ABC中,BC=ABsin∠A=2×8×sin30°=8,
∵∠ABC=90°﹣∠A=90°﹣30°=60°,
∴BE=BCcos60°=8×=4.
12.(1) 当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;
当∠ABC=∠EAC,∵AB为直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∴∠EAC+∠CAB=90°,
∴AB⊥EF,
∴EF为⊙O的切线;
故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;
(2)证明:如图2,作直径AD,连结CD,
∵AD为直径,
∴∠ACD=90°,
∴∠D+∠CAD=90°,
∵∠D=∠B,∠CAE=∠B,
∴∠CAE=∠D,
∴∠EAC+∠CAD=90°,
∴AD⊥EF,
∴EF为⊙O的切线;
(3)如图3,作直径AD,连结CD,BD,
∵AD为直径,
∴∠ABD=90°,
∵∠CAE=∠ABC,
∴∠DAE+∠DAC=∠ABD+∠DBC,
而∠DAC=∠DBC,
∴∠DAE=∠ABD=90°,
∴AD⊥EF,
∴EF为⊙O的切线.
13.解:(1)BD=DC.理由如下:连接AD,
∵AB是直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=DC;
(2)∵AD是等腰△ABC底边上的中线,
∴∠BAD=∠CAD,
∴,
∴BD=DE.
∴BD=DE=DC,
∴∠DEC=∠DCE,
△ABC中,AB=AC,∠A=30°,
∴∠DCE=∠ABC=(180°﹣30°)=75°,
∴∠DEC=75°,
∴∠EDC=180°﹣75°﹣75°=30°,
∵BP∥DE,
∴∠PBC=∠EDC=30°,
∴∠ABP=∠ABC﹣∠PBC=75°﹣30°=45°,
∵OB=OP,
∴∠OBP=∠OPB=45°,
∴∠BOP=90°;
(3)设OP交AC于点G,如图,则∠AOG=∠BOP=90°,
在Rt△AOG中,∠OAG=30°,∴=,
又∵==,∴=,∴=,
又∵∠AGO=∠CGP,
∴△AOG∽△CPG,
∴∠GPC=∠AOG=90°,
∴OP⊥PC,
∴CP是⊙O的切线;
14.(1)证明:(1)如图,连接OE.
∵BE⊥EF,∴∠BEF=90°,
∴BF是圆O的直径,
∴OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;
(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,
∴BEC=∠BEH,
∵BF是⊙O是直径,
∴∠BEF=90°,
∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,
∴∠FEH=∠FEA,
∴FE平分∠AEH.
(3)证明:如图,连结DE.
∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE,
∵∠C=∠EHF=90°,
∴△CDE≌△HFE(AAS),
∴CD=HF,
15.解:(1)过点A作ON的垂线段,交ON于点P,如图①.
在Rt△AOP中,∠APO=90°,∠POA=30°,OA=80米,
所以AP=OA=80×=40(米),
即对学校A的噪声影响最大时,卡车P与学校A的距离是40米.
(2)以点A为圆心,50米长为半径画弧,交ON于点D,E,连接AD,AE,如图②.
在Rt△ADP中,∠APD=90°,AP=40米,AD=50米,
所以DP===30(米).同理可得EP=30米,所以DE=60米.
又因为18千米/时=5米/秒,=12(秒),
所以卡车P沿公路ON方向行驶一次给学校A带来噪声影响的时间为12秒.
人教版数学九年级上册专项培优练习《圆-切线的性质与判定》(2份打包,教师版+原卷版): 这是一份人教版数学九年级上册专项培优练习《圆-切线的性质与判定》(2份打包,教师版+原卷版),文件包含人教版数学九年级上册专项培优练习《圆-切线的性质与判定》教师版doc、人教版数学九年级上册专项培优练习《圆-切线的性质与判定》原卷版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案): 这是一份人教版数学九年级上册专项培优练习十五《切线的性质与判定》(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学八年级上册专项培优练习四《全等三角形证明题专练》(含答案): 这是一份人教版数学八年级上册专项培优练习四《全等三角形证明题专练》(含答案),共14页。