|试卷下载
搜索
    上传资料 赚现金
    广东省广州市天河区2022年中考数学全真模拟试卷含解析
    立即下载
    加入资料篮
    广东省广州市天河区2022年中考数学全真模拟试卷含解析01
    广东省广州市天河区2022年中考数学全真模拟试卷含解析02
    广东省广州市天河区2022年中考数学全真模拟试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州市天河区2022年中考数学全真模拟试卷含解析

    展开
    这是一份广东省广州市天河区2022年中考数学全真模拟试卷含解析,共26页。试卷主要包含了有下列四个命题,关于的方程有实数根,则满足等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列各式中,正确的是(  )
    A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
    2.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为(  )

    A.3 B.4 C.6 D.8
    3.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为(  )
    A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人
    4.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    5.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是(  )

    A.60° B.50° C.40° D.30°
    6.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为(  )
    A.a≥ B.a> C.a≤ D.a>
    7.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    8.关于的方程有实数根,则满足( )
    A. B.且 C.且 D.
    9.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是(  )

    A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2
    10.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )
    A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y2
    11.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为(  )

    A.24 B.18 C.12 D.9
    12.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是(  )

    A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
    14.如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).

    15.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.
    16.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.

    17.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.

    18.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.






    7
    8
    8
    7
    s2
    1
    1.2
    0.9
    1.8

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.

    20.(6分)《九章算术》中有这样一道题,原文如下:
    今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
    请解答上述问题.
    21.(6分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.

    22.(8分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形.列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a=20,b=10,求整个长方形运动场的面积.

    23.(8分)今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.
    (1)求购进 A、B 两种树苗的单价;
    (2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?
    24.(10分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.

    (1)求抛物线的解析式;
    (2)点P为直线AC上方抛物线上一动点;
    ①连接PO,交AC于点E,求的最大值;
    ②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    25.(10分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:

    求本次调查的学生人数;
    求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
    若该校共有学生1200人,试估计每周课外阅读时间满足的人数.
    26.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP=AD. 求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ=BC.已知 AD=1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM=CN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.

    27.(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b为   米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    A.括号前是负号去括号都变号;
    B负次方就是该数次方后的倒数,再根据前面两个负号为正;
    C. 两个负号为正;
    D.三次根号和二次根号的算法.
    【详解】
    A选项,﹣(x﹣y)=﹣x+y,故A错误;
    B选项, ﹣(﹣2)﹣1=,故B正确;
    C选项,﹣,故C错误;
    D选项,22,故D错误.
    【点睛】
    本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
    2、D
    【解析】
    连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
    【详解】
    连接OA.

    ∵⊙O的半径为5,CD=2,
    ∵OD=5-2=3,即OD=3;
    又∵AB是⊙O的弦,OC⊥AB,
    ∴AD=AB;
    在直角三角形ODC中,根据勾股定理,得
    AD==4,
    ∴AB=1.
    故选D.
    【点睛】
    本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
    3、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    2536000人=2.536×106人.
    故选C.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    5、D
    【解析】
    由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
    【详解】
    解:在△DEF中,∠1=60°,∠DEF=90°,
    ∴∠D=180°-∠DEF-∠1=30°.
    ∵AB∥CD,
    ∴∠2=∠D=30°.
    故选D.
    【点睛】
    本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
    6、B
    【解析】
    方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.
    【详解】

    ①+②得:
    解得:
    故选:B.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知
    数的值.
    7、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    8、A
    【解析】
    分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
    【详解】
    当a=5时,原方程变形为-4x-1=0,解得x=-;
    当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
    所以a的取值范围为a≥1.
    故选A.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
    9、D
    【解析】
    抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
    【详解】
    当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
    ∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
    当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
    则这条直线解析式为y=﹣x+1.
    故选D.

    【点睛】
    本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
    10、B
    【解析】
    根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.
    【详解】
    抛物线y=x2﹣4x+m的对称轴为x=2,
    当x<2时,y随着x的增大而减小,
    因为-4<-3<1<2,
    所以y3<y2<y1,
    故选B.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.
    11、A
    【解析】
    【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
    【详解】∵E是AC中点,
    ∵EF∥BC,交AB于点F,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长是4×6=24,
    故选A.
    【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
    12、D
    【解析】
    根据平行线的性质以及角平分线的定义,即可得到正确的结论.
    【详解】
    解:

    ,故A选项正确;





    故B选项正确;
    平分


    ,故C选项正确;

    ,故选项错误;
    故选.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
    详解:根据三角形的三边关系,得
    第三边>4,而<1.
    又第三条边长为整数,
    则第三边是2.
    点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
    14、.
    【解析】
    首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a.过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'DAC'a,然后根据S△AB'C'AB'•C'D即可求解.
    【详解】
    ∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.
    ∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.
    ∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.
    如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'•C'Da•aa1.
    故答案为:a1.

    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.
    15、1
    【解析】试题分析:先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式y=x+b﹣3,再把点A(﹣1,2)关于y轴的对称点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.
    故答案为1.
    考点:一次函数图象与几何变换
    16、150
    【解析】
    设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.
    17、
    【解析】
    E、F分别是BC、AC的中点.

    ∠CAB=26°



    ∠CAD =26°





    !
    18、丙
    【解析】
    先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
    【详解】
    因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
    所以丙组的成绩比较稳定,
    所以丙组的成绩较好且状态稳定,应选的组是丙组.
    故答案为丙.
    【点睛】
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)BD=2.
    【解析】
    (1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
    (2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.
    【详解】
    (1)证明:连接OD,如图,

    ∵AB为⊙0的直径,
    ∴∠ADB=90°,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴AD平分BC,即DB=DC,
    ∵OA=OB,
    ∴OD为△ABC的中位线,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∴DE是⊙0的切线;
    (2)∵∠B=∠C,∠CED=∠BDA=90°,
    ∴△DEC∽△ADB,
    ∴,
    ∴BD•CD=AB•CE,
    ∵BD=CD,
    ∴BD2=AB•CE,
    ∵⊙O半径为3,CE=2,
    ∴BD==2.
    【点睛】
    本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.
    20、甲有钱,乙有钱.
    【解析】
    设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
    【详解】
    解:设甲有钱,乙有钱.
    由题意得: ,
    解方程组得: ,
    答:甲有钱,乙有钱.
    【点睛】
    本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
    21、一次函数解析式为;反比例函数解析式为;.
    【解析】
    (1)根据A(-1,0)代入y=kx+2,即可得到k的值;
    (2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;
    (3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.
    【详解】
    (1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
    ∴一次函数解析式为y=2x+2;
    把C(1,n)代入y=2x+2得n=4,
    ∴C(1,4),
    把C(1,4)代入y=得m=1×4=4,
    ∴反比例函数解析式为y=;
    (2)∵PD∥y轴,
    而D(a,0),
    ∴P(a,2a+2),Q(a,),
    ∵PQ=2QD,
    ∴2a+2﹣=2×,
    整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
    ∴D(2,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.
    22、(1)(2)(3)
    【解析】
    试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可.
    试题解析:
    (1)矩形B的长可表示为:a+b,宽可表示为:a-b,
    ∴每个B区矩形场地的周长为:2(a+b+a-b)=4a;
    (2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,
    ∴整个矩形的周长为:2(2a+b+2a-b)=8a;
    (3)矩形的面积为:S=(2a+b)(2a-b)= ,
    把,代入得,S=4×202-102=4×400-100=1500.
    点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.
    23、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵
    【解析】
    (1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: ,
    解得: .
    答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵.
    (2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:
    200a+300(30﹣a)≤8000,
    解得:a≥1.
    ∴A种树苗至少需购进 1 棵.
    【点睛】
    本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.
    24、(1);(2)①有最大值1;②(2,3)或(,)
    【解析】
    (1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
    (2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    ②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
    【详解】
    (1)当x=0时,y=2,即C(0,2),
    当y=0时,x=4,即A(4,0),
    将A,C点坐标代入函数解析式,得

    解得,
    抛物线的解析是为;
       (2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N

    ∵直线PN∥y轴,
    ∴△PEM~△OEC,

    把x=0代入y=-x+2,得y=2,即OC=2,
    设点P(x,-x2+x+2),则点M(x,-x+2),
    ∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
    ∴=,
    ∵0<x<4,∴当x=2时,=有最大值1.
    ②∵A(4,0),B(-1,0),C(0,2),
    ∴AC=2,BC=,AB=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
    ∴D(,0),
    ∴DA=DC=DB=,
    ∴∠CDO=2∠BAC,
    ∴tan∠CDO=tan(2∠BAC)=,
    过P作x轴的平行线交y轴于R,交AC的延长线于G,
    情况一:如图

    ∴∠PCF=2∠BAC=∠PGC+∠CPG,
    ∴∠CPG=∠BAC,
    ∴tan∠CPG=tan∠BAC=,
    即,
    令P(a,-a2+a+2),
    ∴PR=a,RC=-a2+a,
    ∴,
    ∴a1=0(舍去),a2=2,
    ∴xP=2,-a2+a+2=3,P(2,3)
    情况二,∴∠FPC=2∠BAC,
    ∴tan∠FPC=,
    设FC=4k,
    ∴PF=3k,PC=5k,
    ∵tan∠PGC=,
    ∴FG=6k,
    ∴CG=2k,PG=3k,
    ∴RC=k,RG=k,PR=3k-k=k,
    ∴,
    ∴a1=0(舍去),a2=,
    xP=,-a2+a+2=,即P(,),
    综上所述:P点坐标是(2,3)或(,).
    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
    25、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人.
    【解析】
    【分析】根据等级A的人数及所占百分比即可得出调查学生人数;
    先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;
    总人数课外阅读时间满足的百分比即得所求.
    【详解】由条形图知,A级的人数为20人,
    由扇形图知:A级人数占总调查人数的,
    所以:人,
    即本次调查的学生人数为200人;
    由条形图知:C级的人数为60人,
    所以C级所占的百分比为:,
    B级所占的百分比为:,
    B级的人数为人,
    D级的人数为:人,
    B所在扇形的圆心角为:,
    补全条形图如图所示:

    因为C级所占的百分比为,
    所以全校每周课外阅读时间满足的人数为:人,
    答:全校每周课外阅读时间满足的约有360人.
    【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.
    26、(1)证明见解析(2) (3)
    【解析】
    (1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;
    (2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;
    (3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.
    【详解】
    (1)在图1中,设AD=BC=a,则有AB=CD=a,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∵PA=AD=BC=a,
    ∴PD==a,
    ∵AB=a,
    ∴PD=AB;
    (2)如图,作点P关于BC的对称点P′,
    连接DP′交BC于点E,此时△PDE的周长最小,

    设AD=PA=BC=a,则有AB=CD=a,
    ∵BP=AB-PA,
    ∴BP′=BP=a-a,
    ∵BP′∥CD,
    ∴ ;
    (3)GH=,理由为:
    由(2)可知BF=BP=AB-AP,
    ∵AP=AD,
    ∴BF=AB-AD,
    ∵BQ=BC,
    ∴AQ=AB-BQ=AB-BC,
    ∵BC=AD,
    ∴AQ=AB-AD,
    ∴BF=AQ,
    ∴QF=BQ+BF=BQ+AQ=AB,
    ∵AB=CD,
    ∴QF=CD,
    ∵QM=CN,
    ∴QF-QM=CD-CN,即MF=DN,
    ∵MF∥DN,
    ∴∠NFH=∠NDH,
    在△MFH和△NDH中,

    ∴△MFH≌△NDH(AAS),
    ∴FH=DH,
    ∵G为CF的中点,
    ∴GH是△CFD的中位线,
    ∴GH=CD=×2=.
    【点睛】
    此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.
    27、(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
    【解析】
    (1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
    (2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
    (3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
    【详解】
    (1)(300﹣100)÷20=10(米/分钟),
    b=15÷1×2=30,
    故答案为10,30;
    (2)当0≤x≤2时,y=15x;
    当x≥2时,y=30+10×3(x﹣2)=30x﹣30,
    当y=30x﹣30=300时,x=11,
    ∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;
    (3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
    当10x+100﹣(30x﹣30)=50时,解得:x=4,
    当30x﹣30﹣(10x+100)=50时,解得:x=9,
    当300﹣(10x+100)=50时,解得:x=15,
    答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
    【点睛】
    本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.

    相关试卷

    2023年广东省广州市天河区中考数学二模试卷(含解析): 这是一份2023年广东省广州市天河区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年广东省广州市天河区中考数学二模试卷(含解析): 这是一份2023年广东省广州市天河区中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年广东省广州市天河区中考数学一模试卷(含解析): 这是一份2023年广东省广州市天河区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map