终身会员
搜索
    上传资料 赚现金
    广东省广州四中学2022年中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    广东省广州四中学2022年中考数学模拟预测试卷含解析01
    广东省广州四中学2022年中考数学模拟预测试卷含解析02
    广东省广州四中学2022年中考数学模拟预测试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州四中学2022年中考数学模拟预测试卷含解析

    展开
    这是一份广东省广州四中学2022年中考数学模拟预测试卷含解析,共21页。试卷主要包含了若a与﹣3互为倒数,则a=,函数等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是(  )
    A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
    2.计算的正确结果是(  )
    A. B.- C.1 D.﹣1
    3.若a与﹣3互为倒数,则a=(  )
    A.3 B.﹣3 C. D.-
    4.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )

    A. B. C. D.
    5.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=(  )

    A.76° B.78° C.80° D.82°
    6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )

    A.3:4 B.9:16 C.9:1 D.3:1
    7.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )

    A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
    8.函数(为常数)的图像上有三点,,,则函数值的大小关系是( )
    A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1
    9.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:
    ①a、b同号;
    ②当x=1和x=3时,函数值相等;
    ③4a+b=1;
    ④当y=﹣2时,x的值只能取1;
    ⑤当﹣1<x<5时,y<1.
    其中,正确的有(  )

    A.2个 B.3个 C.4个 D.5个
    10.下面的图形是轴对称图形,又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.

    12.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.

    13.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
    14.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )

    A.点M B.点N C.点P D.点Q
    15.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
    16.函数的定义域是__________.
    17.正八边形的中心角为______度.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.

    19.(5分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
    若△CEF与△ABC相似.
    ①当AC=BC=2时,AD的长为   ;
    ②当AC=3,BC=4时,AD的长为   ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
    20.(8分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.
    求证:;
    若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.

    21.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
    (1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
    (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
    (3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

    22.(10分)下面是一位同学的一道作图题:
    已知线段a、b、c(如图),求作线段x,使

    他的作法如下:
    (1)以点O为端点画射线,.
    (2)在上依次截取,.
    (3)在上截取.
    (4)联结,过点B作,交于点D.
    所以:线段________就是所求的线段x.
    ①试将结论补完整
    ②这位同学作图的依据是________
    ③如果,,,试用向量表示向量.
    23.(12分)如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
    (1)依题意补全图形;
    (2)猜想AE与CD的数量关系,并证明.

    24.(14分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
    故选A.
    【点睛】
    本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
    2、D
    【解析】
    根据有理数加法的运算方法,求出算式的正确结果是多少即可.
    【详解】
    原式
    故选:D.
    【点睛】
    此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
    ①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
    数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
    1相加,仍得这个数.
    3、D
    【解析】
    试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
    ∴a=,
    故选C.
    考点:倒数.
    4、A
    【解析】
    观察所给的几何体,根据三视图的定义即可解答.
    【详解】
    左视图有2列,每列小正方形数目分别为2,1.
    故选A.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    5、B
    【解析】
    如图,分别过K、H作AB的平行线MN和RS,

    ∵AB∥CD,
    ∴AB∥CD∥RS∥MN,
    ∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
    ∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
    ∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
    ∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
    又∠BKC﹣∠BHC=27°,
    ∴∠BHC=∠BKC﹣27°,
    ∴∠BKC=180°﹣2(∠BKC﹣27°),
    ∴∠BKC=78°,
    故选B.
    6、B
    【解析】
    可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴DC∥AB,
    ∴△DFE∽△BFA,
    ∵DE:EC=3:1,
    ∴DE:DC=3:4,
    ∴DE:AB=3:4,
    ∴S△DFE:S△BFA=9:1.
    故选B.
    7、B
    【解析】
    延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
    【详解】
    延长AC交DE于点F.
    A. ∵∠α+∠β=180°,∠β=∠1+90°,
    ∴∠α=90°-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
    ∴∠α=∠1,
    ∴能使得AB∥DE;
    C.∵∠β=3∠α,∠β=∠1+90°,
    ∴3∠α=90°+∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    D.∵∠α+∠β=90°,∠β=∠1+90°,
    ∴∠α=-∠1,即∠α≠∠1,
    ∴不能使得AB∥DE;
    故选B.

    【点睛】
    本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
    8、A
    【解析】
    试题解析:∵函数y=(a为常数)中,-a1-1<0,
    ∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,
    ∵>0,
    ∴y3<0;
    ∵-<-,
    ∴0<y1<y1,
    ∴y3<y1<y1.
    故选A.
    9、A
    【解析】
    根据二次函数的性质和图象可以判断题目中各个小题是否成立.
    【详解】
    由函数图象可得,
    a>1,b<1,即a、b异号,故①错误,
    x=-1和x=5时,函数值相等,故②错误,
    ∵-=2,得4a+b=1,故③正确,
    由图象可得,当y=-2时,x=1或x=4,故④错误,
    由图象可得,当-1<x<5时,y<1,故⑤正确,
    故选A.
    【点睛】
    考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
    10、B
    【解析】
    根据轴对称图形和中心对称图形的定义对各个图形进行逐一分析即可.
    【详解】
    解:第一个图形是轴对称图形,但不是中心对称图形;
    第二个图形是中心对称图形,但不是轴对称图形;
    第三个图形既是轴对称图形,又是中心对称图形;
    第四个图形即是轴对称图形,又是中心对称图形;
    ∴既是轴对称图形,又是中心对称图形的有两个,
    故选:B.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
    【详解】
    如图,过点D作DF⊥BC于点F,

    ∵四边形ABCD是菱形,
    ∴BC=CD,AD∥BC,
    ∵∠DEB=90°,AD∥BC,
    ∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
    ∴四边形DEBF是矩形,
    ∴DF=BE,DE=BF,
    ∵点C的横坐标为5,BE=3DE,
    ∴BC=CD=5,DF=3DE,CF=5﹣DE,
    ∵CD2=DF2+CF2,
    ∴25=9DE2+(5﹣DE)2,
    ∴DE=1,
    ∴DF=BE=3,
    设点C(5,m),点D(1,m+3),
    ∵反比例函数y=图象过点C,D,
    ∴5m=1×(m+3),
    ∴m=,
    ∴点C(5,),
    ∴k=5×=,
    故答案为:
    【点睛】
    本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
    12、
    【解析】
    过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=
    【详解】
    解:

    如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.
    ∵∠OAB=30°,∠ADE=90°,∠DEB=90°
    ∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°
    ∴∠DOA=∠OBE
    ∴△ADO∽△OEB
    ∵∠OAB=30°,∠AOB=90°,
    ∴OA∶OB=
    ∵点A坐标为(3,2)
    ∴AD=3,OD=2
    ∵△ADO∽△OEB

    ∴OE
    ∵OC∥AD∥BE
    根据平行线分线段成比例得:
    AC:BC=OD:OE=2∶=
    故答案为.
    【点睛】
    本题考查三角形相似的证明以及平行线分线段成比例.
    13、500
    【解析】
    设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
    【详解】
    解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
    故答案为:500.
    【点睛】
    本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
    14、D
    【解析】
    D.
    试题分析:应用排他法分析求解:
    若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.
    若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.
    若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.
    故选D.
    考点:1.动点问题的函数图象分析;2.排他法的应用.
    15、-1
    【解析】
    试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
    考点:反比例外函数k的几何意义.
    16、
    【解析】
    根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
    【详解】
    根据题意得:x-1≥0,
    解得:x≥1.
    故答案为:.
    【点睛】
    此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
    17、45°
    【解析】
    运用正n边形的中心角的计算公式计算即可.
    【详解】
    解:由正n边形的中心角的计算公式可得其中心角为,
    故答案为45°.
    【点睛】
    本题考查了正n边形中心角的计算.

    三、解答题(共7小题,满分69分)
    18、见解析
    【解析】
    根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
    【详解】
    ∵BF 平分∠ABC,
    ∴∠ABF=∠CBF,
    ∵∠BAC=90°,AD⊥BC,
    ∴∠ABF+∠AFB=∠CBF+∠BED=90°,
    ∴∠AFB=∠BED,
    ∵∠AEF=∠BED,
    ∴∠AFE=∠AEF,
    ∴AE=AF.
    【点睛】
    本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
    19、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
    【解析】
    (1)①当AC=BC=2时,△ABC为等腰直角三角形;
    ②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
    (2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
    【详解】
    (1)若△CEF与△ABC相似.
    ①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,

    此时D为AB边中点,AD=AC=.
    ②当AC=3,BC=4时,有两种情况:
    (I)若CE:CF=3:4,如答图2所示,

    ∵CE:CF=AC:BC,∴EF∥BC.
    由折叠性质可知,CD⊥EF,
    ∴CD⊥AB,即此时CD为AB边上的高.
    在Rt△ABC中,AC=3,BC=4,∴BC=1.
    ∴cosA=.∴AD=AC•cosA=3×=.
    (II)若CF:CE=3:4,如答图3所示.
    ∵△CEF∽△CAB,∴∠CEF=∠B.
    由折叠性质可知,∠CEF+∠ECD=90°.
    又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
    同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
    ∴此时AD=AB=×1=.
    综上所述,当AC=3,BC=4时,AD的长为或.
    (2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
    如图所示,连接CD,与EF交于点Q.
    ∵CD是Rt△ABC的中线
    ∴CD=DB=AB,
    ∴∠DCB=∠B.
    由折叠性质可知,∠CQF=∠DQF=90°,
    ∴∠DCB+∠CFE=90°,
    ∵∠B+∠A=90°,
    ∴∠CFE=∠A,
    又∵∠ACB=∠ACB,
    ∴△CEF∽△CBA.
    20、(1)证明见解析;(2)补图见解析;.
    【解析】
    根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;
    根据平行线的判定定理得到AD∥BG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到 ,过点B作 于H,根据平行四边形的面积公式即可得到结论.
    【详解】
    解:,








    补全图形,如图所示:

    ,,
    ,,
    ,,

    ,,且,



    四边形ABGD是平行四边形,

    平行四边形ABGD是菱形,
    设,



    过点B作于H,


    故答案为(1)证明见解析;(2)补图见解析;.
    【点睛】
    本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.
    21、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
    【解析】
    【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;
    (2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,
    (3)根据勾股定理逆定理解答即可.
    【详解】(1)如图所示,△A1B1C1即为所求;

    (2)如图所示,△A2B2C2即为所求;
    (3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,
    即OB2+OA12=A1B2,
    所以三角形的形状为等腰直角三角形.
    【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    22、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
    【解析】
    ①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
    【详解】
    ①∵,
    ∴OA:AB=OC:CD,
    ∵,,,,
    ∴线段就是所求的线段x,
    故答案为:
    ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    ③∵、,且,
    ∴,
    ∴,即,
    ∴,
    ∴.
    【点睛】
    本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.
    23、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意画出图形即可;
    (2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.
    【详解】
    解:(1)如图:

    (2)AE与 CD的数量关系为AE=CD.
    证明:∵∠C=90°,AC=BC,
    ∴∠A=45°.
    ∵DE⊥AB,
    ∴∠ADE=∠A=45°.
    ∴AE=DE,
    ∵BD平分∠ABC,
    ∴CD=DE,
    ∴AE=CD.
    【点睛】
    此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.
    24、(1)2400个, 10天;(2)1人.
    【解析】
    (1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
    【详解】
    解:(1)解:设原计划每天生产零件x个,由题意得,

    解得x=2400,
    经检验,x=2400是原方程的根,且符合题意.
    ∴规定的天数为24000÷2400=10(天).
    答:原计划每天生产零件2400个,规定的天数是10天.
    (2)设原计划安排的工人人数为y人,由题意得,
    [5×20×(1+20%)×+2400] ×(10-2)=24000,
    解得,y=1.
    经检验,y=1是原方程的根,且符合题意.
    答:原计划安排的工人人数为1人.
    【点睛】
    本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.

    相关试卷

    2023年广东省广州中学中考数学模拟试卷(6月份)(含解析): 这是一份2023年广东省广州中学中考数学模拟试卷(6月份)(含解析),共20页。试卷主要包含了 15的相反数为,04×106B, 下列计算正确的是等内容,欢迎下载使用。

    2023学年广东省广州市第三中学中学中考数学模拟预测试卷(含答案解析): 这是一份2023学年广东省广州市第三中学中学中考数学模拟预测试卷(含答案解析),共22页。

    广东省广州市广州中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份广东省广州市广州中学2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,方程x2﹣3x+2=0的解是,若分式方程无解,则a的值为,最小的正整数是,下列图形不是正方体展开图的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map