搜索
    上传资料 赚现金
    英语朗读宝

    广东省开平市第二中学2021-2022学年中考猜题数学试卷含解析

    广东省开平市第二中学2021-2022学年中考猜题数学试卷含解析第1页
    广东省开平市第二中学2021-2022学年中考猜题数学试卷含解析第2页
    广东省开平市第二中学2021-2022学年中考猜题数学试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省开平市第二中学2021-2022学年中考猜题数学试卷含解析

    展开

    这是一份广东省开平市第二中学2021-2022学年中考猜题数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,有个零件如图放置,它的主视图是,一、单选题,下列说法正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    2.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是(  )
    A.本市明天将有的地区下雨 B.本市明天将有的时间下雨
    C.本市明天下雨的可能性比较大 D.本市明天肯定下雨
    3.关于的分式方程解为,则常数的值为( )
    A. B. C. D.
    4.有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是  

    A. B. C. D.
    5.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心,则折痕的长度为( )

    A. B.2 C. D.
    6.一、单选题
    如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )

    A. B. C. D.
    7.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )

    A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
    8.下列说法正确的是( )
    A.对角线相等且互相垂直的四边形是菱形
    B.对角线互相平分的四边形是正方形
    C.对角线互相垂直的四边形是平行四边形
    D.对角线相等且互相平分的四边形是矩形
    9.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个

    A.1 B.2 C.3 D.4
    10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()

    A. B.8 C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为__.

    12.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.

    13.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.

    14.已知整数k<5,若△ABC的边长均满足关于x的方程,则△ABC的周长是   .
    15.若﹣4xay+x2yb=﹣3x2y,则a+b=_____.
    16.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.

    17.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.

    根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
    19.(5分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
    (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;
    (3)△A2B2C2的面积是   平方单位.

    20.(8分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

    (Ⅰ)该教师调查的总人数为   ,图②中的m值为   ;
    (Ⅱ)求样本中分数值的平均数、众数和中位数.
    21.(10分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.

    22.(10分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是(  )

    A.7 B.8 C.14 D.16
    23.(12分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
    (1)求m,n的值;
    (2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.

    24.(14分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:

    成本
    (单位:万元/亩)
    销售额
    (单位:万元/亩)
    郁金香
    2.4
    3
    玫瑰
    2
    2.5
    (1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
    (2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    2、C
    【解析】
    试题解析:根据概率表示某事情发生的可能性的大小,分析可得:
    A、明天降水的可能性为85%,并不是有85%的地区降水,错误;
    B、本市明天将有85%的时间降水,错误;
    C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;
    D、明天肯定下雨,错误.
    故选C.
    考点:概率的意义.
    3、D
    【解析】
    根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可.
    【详解】
    解:把x=4代入方程,得

    解得a=1.
    经检验,a=1是原方程的解
    故选D.
    点睛:此题考查了分式方程的解,分式方程注意分母不能为2.
    4、C
    【解析】
    根据主视图的定义判断即可.
    【详解】
    解:从正面看一个正方形被分成三部分,两条分别是虚线,故正确.
    故选:.
    【点睛】
    此题考查的是主视图的判断,掌握主视图的定义是解决此题的关键.
    5、C
    【解析】
    过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.
    【详解】
    过O作OC⊥AB,交圆O于点D,连接OA,

    由折叠得到CD=OC=OD=1cm,
    在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,
    即AC2+1=4,
    解得:AC=cm,
    则AB=2AC=2cm.
    故选C.
    【点睛】
    此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.
    6、D
    【解析】
    试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.
    考点:简单几何体的三视图.
    7、D
    【解析】
    根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.
    【详解】
    在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
    ∵E、F分别为边AB,BC的中点,
    ∴AE=BF=BC,
    在△ABF和△DAE中,

    ∴△ABF≌△DAE(SAS),
    ∴∠BAF=∠ADE,
    ∵∠BAF+∠DAF=∠BAD=90°,
    ∴∠ADE+∠DAF=∠BAD=90°,
    ∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
    ∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
    ∵DE是△ABD的中线,
    ∴∠ADE≠∠EDB,
    ∴∠BAF≠∠EDB,故②错误;
    ∵∠BAD=90°,AM⊥DE,
    ∴△AED∽△MAD∽△MEA,

    ∴AM=2EM,MD=2AM,
    ∴MD=2AM=4EM,故④正确;
    设正方形ABCD的边长为2a,则BF=a,
    在Rt△ABF中,AF=
    ∵∠BAF=∠MAE,∠ABC=∠AME=90°,
    ∴△AME∽△ABF,
    ∴ ,
    即,
    解得AM=
    ∴MF=AF-AM=,

    ∴AM=MF,故⑤正确;
    如图,过点M作MN⊥AB于N,



    解得MN=,AN=,
    ∴NB=AB-AN=2a-=,
    根据勾股定理,BM=
    过点M作GH∥AB,过点O作OK⊥GH于K,
    则OK=a-=,MK=-a=,
    在Rt△MKO中,MO=
    根据正方形的性质,BO=2a×,
    ∵BM2+MO2=

    ∴BM2+MO2=BO2,
    ∴△BMO是直角三角形,∠BMO=90°,故③正确;
    综上所述,正确的结论有①③④⑤共4个.
    故选:D
    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.
    8、D
    【解析】
    分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.
    详解:A、对角线互相平分且垂直的四边形是菱形,故错误;
    B、四条边相等的四边形是菱形,故错误;
    C、对角线相互平分的四边形是平行四边形,故错误;
    D、对角线相等且相互平分的四边形是矩形,正确;
    故选D.
    点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.
    9、D
    【解析】
    先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
    【详解】
    解:∵DE∥CA,DF∥BA,
    ∴四边形AEDF是平行四边形,选项①正确;
    若∠BAC=90°,
    ∴平行四边形AEDF为矩形,选项②正确;
    若AD平分∠BAC,
    ∴∠EAD=∠FAD,
    又DE∥CA,∴∠EDA=∠FAD,
    ∴∠EAD=∠EDA,
    ∴AE=DE,
    ∴平行四边形AEDF为菱形,选项③正确;
    若AB=AC,AD⊥BC,
    ∴AD平分∠BAC,
    同理可得平行四边形AEDF为菱形,选项④正确,
    则其中正确的个数有4个.
    故选D.
    【点睛】
    此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
    10、D
    【解析】
    ∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
    设⊙O的半径为r,则OC=r-2,
    在Rt△AOC中,∵AC=1,OC=r-2,
    ∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
    ∴AE=2r=3.
    连接BE,

    ∵AE是⊙O的直径,∴∠ABE=90°.
    在Rt△ABE中,∵AE=3,AB=8,∴.
    在Rt△BCE中,∵BE=6,BC=1,∴.故选D.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2﹣π.
    【解析】
    试题分析:根据题意可得:∠O=2∠A=60°,则△OBC为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=,,则.
    12、
    【解析】
    过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
    【详解】
    如图,过点B作BD⊥AC于D,设AH=BC=2x,

    ∵AB=AC,AH⊥BC,
    ∴BH=CH=BC=x,
    根据勾股定理得,AC==x,
    S△ABC=BC•AH=AC•BD,
    即•2x•2x=•x•BD,
    解得BC=x,
    所以,sin∠BAC=.
    故答案为.
    13、48°
    【解析】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
    【详解】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC.
    ∵四边形AKCB内接于圆,
    ∴∠AKC+∠ABC=180°,
    ∵∠ABC=114°,
    ∴∠AKC=66°,
    ∴∠AOC=2∠AKC=132°,
    ∵DA、DC分别切⊙O于A、C两点,
    ∴∠OAD=∠OCB=90°,
    ∴∠ADC+∠AOC=180°,
    ∴∠ADC=48°

    故答案为48°.
    【点睛】
    本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
    14、6或12或1.
    【解析】
    根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.
    ∵整数k<5,∴k=4.
    ∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.
    ∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,
    ∴△ABC的边长为2、2、2或4、4、4或4、4、2.
    ∴△ABC的周长为6或12或1.
    考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.
    【详解】
    请在此输入详解!
    15、1
    【解析】
    两个单项式合并成一个单项式,说明这两个单项式为同类项.
    【详解】
    解:由同类项的定义可知,
    a=2,b=1,
    ∴a+b=1.
    故答案为:1.
    【点睛】
    本题考查的知识点为:同类项中相同字母的指数是相同的.
    16、(﹣2016, +1)
    【解析】
    据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
    【详解】
    解:∵△ABC是等边三角形AB=3﹣1=2,
    ∴点C到x轴的距离为1+2×=+1,
    横坐标为2,
    ∴C(2, +1),
    第2018次变换后的三角形在x轴上方,
    点C的纵坐标为+1,
    横坐标为2﹣2018×1=﹣2016,
    所以,点C的对应点C′的坐标是(﹣2016,+1)
    故答案为:(﹣2016,+1)
    【点睛】
    本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
    17、3
    【解析】
    如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=×42=4,再证明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解决问题.
    【详解】
    解:如图,连接BD.

    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,
    ∴△BCD是等边三角形,
    ∴S△EBC=S△DBC=×42=4,
    ∵EM=MB,EN=NC,
    ∴MN∥BC,MN=BC,
    ∴△EMN∽△EBC,
    ∴=()2=,
    ∴S△EMN=,
    ∴S阴=4-=3,
    故答案为3.
    【点睛】
    本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

    三、解答题(共7小题,满分69分)
    18、(1)5;(2)36%;(3).
    【解析】
    试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
    (2)根据:小组频数= ,进行求解即可;
    (3)利用列举法求概率即可.
    试题解析:
    (1)E类:50-2-3-22-18=5(人),故答案为:5;
    补图如下:

    (2)D类:1850×100%=36%,故答案为:36%;
    (3)设这5人为
    有以下10种情况:
    其中,两人都在 的概率是: .
    19、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    20、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.
    【解析】
    (1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;
    (2)根据平均数、众数和中位数的定义求解即可.
    【详解】
    (Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),
    m%=×100%=40%,即m=40,
    故答案为:25、40;
    (Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,
    则样本分知的平均数为(分),
    众数为75分,中位数为第13个数据,即75分.
    【点睛】
    理解两幅统计图中各数据的含义及其对应关系是解题关键.
    21、 (1)∠B=40°;(2)AB= 6.
    【解析】
    (1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案; 
    (2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
    【详解】
    解:(1)如解图①,连接OD,

    ∵BC切⊙O于点D,
    ∴∠ODB=90°,
    ∵∠C=90°,
    ∴AC∥OD,
    ∴∠CAD=∠ADO,
    ∵OA=OD,
    ∴∠DAO=∠ADO=∠CAD=25°,
    ∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
    ∵∠ODB=90°,
    ∴∠B=90°-∠DOB=90°-50°=40°;
    (2)如解图②,连接OF,OD,

    ∵AC∥OD,
    ∴∠OFA=∠FOD,
    ∵点F为弧AD的中点,
    ∴∠AOF=∠FOD,
    ∴∠OFA=∠AOF,
    ∴AF=OA,
    ∵OA=OF,
    ∴△AOF为等边三角形,
    ∴∠FAO=60°,则∠DOB=60°,
    ∴∠B=30°,
    ∵在Rt△ODB中,OD=2,
    ∴OB=4,
    ∴AB=AO+OB=2+4=6.
    【点睛】
    本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
    22、C
    【解析】
    根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.
    【详解】
    解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.
    故选C.

    【点睛】
    本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.
    23、(1)m=8,n=-2;(2) 点F的坐标为,
    【解析】
    分析:(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k0时,设直线y=kx+b与x轴,y轴的交点分别为点,.
    详解:(1)如图②

    ∵ 点A的坐标为,点C与点A关于原点O对称,
    ∴ 点C的坐标为.
    ∵ AB⊥x轴于点B,CD⊥x轴于点D,
    ∴ B,D两点的坐标分别为,.
    ∵ △ABD的面积为8,,
    ∴ .
    解得 . ∵ 函数()的图象经过点,
    ∴ .
    (2)由(1)得点C的坐标为.
    ① 如图,当时,设直线与x轴,

    y轴的交点分别为点,.
    由 CD⊥x轴于点D可得CD∥.
    ∴ △CD∽△ O.
    ∴ .
    ∵ ,
    ∴ .
    ∴ .
    ∴ 点的坐标为.
    ②如图,当时,设直线与x轴,y轴的交点分别为
    点,.

    同理可得CD∥,.
    ∵ ,
    ∴ 为线段的中点,.
    ∴ .
    ∴ 点的坐标为.
    综上所述,点F的坐标为,.
    点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.
    24、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
    【解析】
    (1)根据题意和表格中的数据可得到y关于x的函数;
    (2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
    【详解】
    (1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
    即y关于x的函数关系式为y=0.1x+15
    (2)由题意得2.4x+2(30-x)≤70
    解得x≤25,
    ∵y=0.1x+15
    ∴当x=25时,y最大=17.5
    30-x=5,
    ∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
    【点睛】
    此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.

    相关试卷

    广东省肇庆第四中学2021-2022学年中考猜题数学试卷含解析:

    这是一份广东省肇庆第四中学2021-2022学年中考猜题数学试卷含解析,共25页。试卷主要包含了计算÷的结果是,《语文课程标准》规定等内容,欢迎下载使用。

    2022届第二附属中学中考猜题数学试卷含解析:

    这是一份2022届第二附属中学中考猜题数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,如图,空心圆柱体的左视图是,把一副三角板如图等内容,欢迎下载使用。

    2021-2022学年重庆市万州国本中学中考猜题数学试卷含解析:

    这是一份2021-2022学年重庆市万州国本中学中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,对于点A,,若点,下列说法等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map