广东省汕头潮南区四校联考2022年中考四模数学试题含解析
展开这是一份广东省汕头潮南区四校联考2022年中考四模数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,,则的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
2.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).
A.3 B. C. D.
3.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
4.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转( )
A.36° B.45° C.72° D.90°
5.在中,,,,则的值是( )
A. B. C. D.
6.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )
A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m2
7.如图是某个几何体的三视图,该几何体是( )
A.圆锥 B.四棱锥 C.圆柱 D.四棱柱
8.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )
A. cm B.3cm C.4cm D.4cm
9.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的( )
A.外心 B.内心 C.三条中线的交点 D.三条高的交点
10.如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.
12.当x为_____时,分式的值为1.
13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
14.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_____的(填“上升”或“下降”)
15.不等式组的整数解是_____.
16.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.
17.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
19.(5分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.
20.(8分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(1)条件下,四边形AODC的面积为多少?
21.(10分)(1)化简:
(2)解不等式组.
22.(10分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)
23.(12分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?
24.(14分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
考点:一元二次方程根的判别式.
2、A
【解析】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.
【详解】
连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.
故选A.
【点睛】
本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.
3、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
4、C
【解析】
分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.
详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.
故选C.
点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
5、D
【解析】
首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
【详解】
∵∠C=90°,BC=1,AB=4,
∴,
∴,
故选:D.
【点睛】
本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
6、D
【解析】
首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.
【详解】
∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,
∴小石子落在不规则区域的概率为0.65,
∵正方形的边长为4m,
∴面积为16 m2
设不规则部分的面积为s m2
则=0.65
解得:s=10.4
故答案为:D.
【点睛】
利用频率估计概率.
7、B
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状
【详解】
解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.
故选B.
【点睛】
本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.
8、C
【解析】
利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.
【详解】
L==4π(cm);
圆锥的底面半径为4π÷2π=2(cm),
∴这个圆锥形筒的高为(cm).
故选C.
【点睛】
此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.
9、B
【解析】
利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.
【详解】
解:如图,过点作于,于,于.
图1
,
(夹在平行线间的距离相等).
如图:过点作于,作于E,作于.
由题意可知: ,,,
∴ ,
∴图中的点是三角形三个内角的平分线的交点,
点是的内心,
故选B.
【点睛】
本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.
10、B
【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.
【详解】
∵BD平分∠ABC,
∴∠ABD=∠EBD,
∵AE⊥BD,
∴∠ADB=∠EDB=90°,
又∵BD=BD,
∴△ABD≌△EBD,
∴AD=ED,
∵,的面积为1,
∴S△AEC=S△ABC=,
又∵AD=ED,
∴S△CDE= S△AEC=,
故选B.
【点睛】
本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
一副扑克牌共有54张,其中只有4张K,
∴从一副扑克牌中随机抽出一张牌,得到K的概率是=,
故答案为:.
【点睛】
此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12、2
【解析】
分式的值是1的条件是,分子为1,分母不为1.
【详解】
∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.
【点睛】
本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.
13、22.5
【解析】
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=(180°-45°)=67.5°,
∴∠ACP度数是67.5°-45°=22.5°
14、下降
【解析】
根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.
【详解】
解:∵在中,,
∴抛物线开口向上,
∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,
故答案为下降.
【点睛】
本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.
15、﹣1、0、1
【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
【详解】
,
解不等式得:,
解不等式得:,
不等式组的解集为,
不等式组的整数解为-1,0,1.
故答案为:-1,0,1.
【点睛】
本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.
16、41
【解析】
试题分析:如图,连接EF
∵△ADF与△DEF同底等高,
∴S△ADF=S△DEF,
即S△ADF-S△DPF=S△DEF-S△DPF,
即S△APD=S△EPF=16cm1,
同理可得S△BQC=S△EFQ=15cm1,、
∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.
考点:1、三角形面积,1、平行四边形
17、
【解析】
试题分析:当n=3时,A=≈0.3178,B=1,A<B;
当n=4时,A=≈0.2679,B=≈0.4142,A<B;
当n=5时,A=≈0.2631,B=≈0.3178,A<B;
当n=6时,A=≈0.2134,B=≈0.2679,A<B;
……
以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2)4.1.
【解析】
试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
考点:切线的性质.
19、见解析
【解析】
证明:∵DE∥AB,∴∠CAB=∠ADE.
在△ABC和△DAE中,∵,
∴△ABC≌△DAE(ASA).
∴BC=AE.
【点睛】
根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.
20、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
【解析】
试题分析:
(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
试题解析:
(1)∵A(0,2),BC∥x轴,
∴B(﹣1,2),C(3,2),
∴AB=1,CA=3,
∴线段AB与线段CA的长度之比为;
(2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
∴B(﹣,a),C(,a),
∴AB=,CA=,
∴线段AB与线段CA的长度之比为;
(3)∵=,
∴=,
又∵OA=a,CD∥y轴,
∴,
∴CD=4a,
∴四边形AODC的面积为=(a+4a)×=1.
21、(1);(2)﹣2<x<1
【解析】
(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;
(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
(1)原式=;
(2)不等式组整理得:,
则不等式组的解集为﹣2<x<1.
【点睛】
此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.
22、热气球离地面的高度约为1米.
【解析】
作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.
【详解】
解:作AD⊥BC交CB的延长线于D,
设AD为x,
由题意得,∠ABD=45°,∠ACD=35°,
在Rt△ADB中,∠ABD=45°,
∴DB=x,
在Rt△ADC中,∠ACD=35°,
∴tan∠ACD= ,
∴ = ,
解得,x≈1.
答:热气球离地面的高度约为1米.
【点睛】
考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.
23、(1)答案见解析(2)36°(3)4550名
【解析】
试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
(2)利用360乘以对应的比例即可求解;
(3)利用总人数6500乘以对应的比例即可求解.
(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,
;
(2)360×=36°;
(3)反对中学生带手机的大约有6500×=4550(名).
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
24、见解析
【解析】
(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;
(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;
【详解】
证明(1)∵AD∥BC,
∴∠B=∠DAE,
∵AB·AD=BC·AE,
∴,
∴△CBA∽△DAE,
∴∠BAC=∠AED.
(2)由(1)得△DAE∽△CBA
∴∠D=∠C,,
∵∠AFE=∠D,
∴∠AFE=∠C,
∴EF∥BC,
∵AD∥BC,
∴EF∥AD,
∵∠BAC=∠AED,
∴DE∥AC,
∴四边形ADEF是平行四边形,
∴DE=AF,
∴.
【点睛】
本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份[数学]2024年广东省汕头市潮南区百校联考中考三模数学试题(含答案),共14页。
这是一份2024年广东省汕头市潮南区百校联考中考三模数学试题,共14页。试卷主要包含了考生必须保持答题卡的整洁,若,则下列不等式正确的是等内容,欢迎下载使用。
这是一份2024年广东省汕头市潮南区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。