|试卷下载
搜索
    上传资料 赚现金
    甘肃省天水市麦积区重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    甘肃省天水市麦积区重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    甘肃省天水市麦积区重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    甘肃省天水市麦积区重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省天水市麦积区重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份甘肃省天水市麦积区重点达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了下列命题是假命题的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为(  )
    A. B. C. D.
    2.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是(  )
    A. B.
    C. D.
    3.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    4.下列命题是假命题的是(  )
    A.有一个外角是120°的等腰三角形是等边三角形
    B.等边三角形有3条对称轴
    C.有两边和一角对应相等的两个三角形全等
    D.有一边对应相等的两个等边三角形全等
    5.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(  )

    A.7 B.10 C.11 D.12
    6.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )

    A.4 对 B.5 对 C.6 对 D.7 对
    7.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是(  )

    A. B. C.1 D.
    8.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是(  )

    A.30° B.40° C.50° D.60°
    9.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )

    A.1+ B.2+ C.2﹣1 D.2+1
    10.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )
    A. B.
    C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.

    12.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.
    13.如果,那么的结果是______.
    14.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=   度.

    15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.

    16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.

    三、解答题(共8题,共72分)
    17.(8分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.

    18.(8分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.
    (1)求sinB的值;
    (2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.

    19.(8分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1.
    (1)求反比例函数的解析式;
    (2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.

    20.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.

    (1)若a+e=0,则代数式b+c+d=  ;
    (2)若a是最小的正整数,先化简,再求值:;
    (3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是  .
    21.(8分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).
    (1)求此抛物线的解析式;
    (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);
    (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.

    22.(10分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.

    23.(12分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.
    24.如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.

    (1)若直线经过、两点,求直线和抛物线的解析式;
    (2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
    (3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.
    【详解】
    ①若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.
    【点睛】
    掌握分类讨论的方法是本题解题的关键.
    2、C
    【解析】
    【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
    【详解】∵pv=k(k为常数,k>0)
    ∴p=(p>0,v>0,k>0),
    故选C.
    【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
    3、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    4、C
    【解析】
    解:A. 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;
    B. 等边三角形有3条对称轴,故B选项正确;
    C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;
    D.利用SSS.可以判定三角形全等.故D选项正确;
    故选C.
    5、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=4,CD=AB=6,
    ∵由作法可知,直线MN是线段AC的垂直平分线,
    ∴AE=CE,
    ∴AE+DE=CE+DE=AD,
    ∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
    故选B.
    6、C
    【解析】
    由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.
    故选C.
    7、D
    【解析】
    过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相 似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.
    【详解】
    解:如图:
    解:过F作FH⊥AE于H,四边形ABCD是矩形,
    AB=CD,AB∥CD,
    AE//CF, 四边形AECF是平行四边形,
    AF=CE,DE=BF,
    AF=3-DE,
    AE=,
    ∠FHA=∠D=∠DAF=,
    ∠AFH+∠HAF=∠DAE+∠FAH=90, ∠DAE=∠AFH,
    △ADE~△AFH,

    AE=AF,
    ,
    DE=,
    故选D.
    【点睛】
    本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.
    8、C
    【解析】
    由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
    【详解】
    ∵∠B=70°,∠BAC=30°
    ∴∠ACB=80°
    ∵将△ABC绕点C顺时针旋转得△EDC.
    ∴AC=CE,∠ACE=∠ACB=80°
    ∴∠CAE=∠AEC=50°
    故选C.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
    9、D
    【解析】
    设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有
    ,解得.
    故选D.
    10、A
    【解析】
    根据题意设未知数,找到等量关系即可解题,见详解.
    【详解】
    解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,
    综上方程组为,
    故选A.
    【点睛】
    本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2+4
    【解析】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    【详解】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    ∵CH=EF,CH∥EF,
    ∴四边形EFHC是平行四边形,
    ∴EC=FH,
    ∵FA=FC,
    ∴EC+CF=FH+AF=AH,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,∵CH∥DB,
    ∴AC⊥CH,
    ∴∠ACH=90°,
    在Rt△ACH中,AH==4,
    ∴△EFC的周长的最小值=2+4,
    故答案为:2+4.

    【点睛】
    本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
    12、3.308×1.
    【解析】
    正确用科学计数法表示即可.
    【详解】
    解:33080=3.308×1
    【点睛】
    科学记数法的表示形式为的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.
    13、1
    【解析】
    令k,则a=2k,b=3k,代入到原式化简的结果计算即可.
    【详解】
    令k,则a=2k,b=3k,∴原式=1.
    故答案为:1.
    【点睛】
    本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
    14、360°.
    【解析】
    根据多边形的外角和等于360°解答即可.
    【详解】
    由多边形的外角和等于360°可知,
    ∠1+∠2+∠3+∠4+∠5=360°,
    故答案为360°.
    【点睛】
    本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
    15、(20,4) (10086,0)
    【解析】
    首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.
    【详解】
    解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.
    ∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).
    故答案为(20,4)、(10086,0).
    【点睛】
    本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.
    16、
    【解析】
    ∵DE是BC的垂直平分线,
    ∴DB=DC=2,
    ∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,
    ∴DE=AD=1,
    ∴BE=,
    故答案为 .
    点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;

    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;

    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.

    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    18、(1)sinB=;(2)DE=1.
    【解析】
    (1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;
    (2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;
    【详解】
    (1)在Rt△ABD中,∵BD=DC=9,AD=6,
    ∴AB==3,∴sinB==.
    (2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,
    ∴DF=3,在Rt△DEF中,DE==1.

    考点:1.解直角三角形的应用;2.平行线分线段成比例定理.
    19、(1)y=;(2)(4,0)或(0,0)
    【解析】
    (1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;
    (2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.
    【详解】
    解:(1)把x=1代入y=2x﹣4,可得
    y=2×1﹣4=2,
    ∴A(1,2),
    把(1,2)代入y=,可得k=1×2=6,
    ∴反比例函数的解析式为y=;
    (2)根据题意可得:2x﹣4=,
    解得x1=1,x2=﹣1,
    把x2=﹣1,代入y=2x﹣4,可得
    y=﹣6,
    ∴点B的坐标为(﹣1,﹣6).
    设直线AB与x轴交于点C,
    y=2x﹣4中,令y=0,则x=2,即C(2,0),
    设P点坐标为(x,0),则
    ×|x﹣2|×(2+6)=8,
    解得x=4或0,
    ∴点P的坐标为(4,0)或(0,0).
    【点睛】本题主要考查用待定系数法求
    一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
    20、 (1)0;(1) ,;(3) ﹣1<x<1.
    【解析】
    (1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;
    (1)根据题意可得:a=1,将分式计算并代入可得结论即可;
    (3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.
    【详解】
    解:(1)∵a+e=0,即a、e互为相反数,
    ∴点C表示原点,
    ∴b、d也互为相反数,
    则a+b+c+d+e=0,
    故答案为:0;
    (1)∵a是最小的正整数,
    ∴a=1,
    则原式=÷[+]

    =•
    =,
    当a=1时,
    原式==;
    (3)∵A、B、C、D、E为连续整数,
    ∴b=a+1,c=a+1,d=a+3,e=a+4,
    ∵a+b+c+d=1,
    ∴a+a+1+a+1+a+3=1,
    4a=﹣4,
    a=﹣1,
    ∵MA+MD=3,
    ∴点M再A、D两点之间,
    ∴﹣1<x<1,
    故答案为:﹣1<x<1.
    【点睛】
    本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.
    21、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).
    【解析】
    (1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;
    (2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;
    (3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.
    【详解】
    解:(1)当x=0时,y=3,
    ∴A(0,3)即OA=3,
    ∵OA=OC,
    ∴OC=3,
    ∴C(3,0),
    ∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)
    ∴,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)如图1,延长PE交x轴于点H,

    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线CD的解析式为y=kx+b,
    将点C(3,0)、D(1,4)代入,得: ,
    解得:,
    ∴y=﹣2x+6,
    ∴E(t,﹣2t+6),P(t,﹣t2+2t+3),
    ∴PH=﹣t2+2t+3,EH=﹣2t+6,
    ∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;
    (3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,

    ∵D(1,4),B(﹣1,0),C(3,0),
    ∴BK=2,KC=2,
    ∴DK垂直平分BC,
    ∴BD=CD,
    ∴∠BDK=∠CDK,
    ∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,
    ∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,
    ∴∠CDK+∠DEQ=45°,即∠RNE=45°,
    ∵ER⊥DK,
    ∴∠NER=45°,
    ∴∠MEQ=∠MQE=45°,
    ∴QM=ME,
    ∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,
    ∴△DQT≌△ECH,
    ∴DT=EH,QT=CH,
    ∴ME=4﹣2(﹣2t+6),
    QM=MT+QT=MT+CH=t﹣1+(3﹣t),
    4﹣2(﹣2t+6)=t﹣1+(3﹣t),
    解得:t=,
    ∴P(,).
    【点睛】
    本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.
    22、
    【解析】
    过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.
    【详解】
    解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,

    ∵房子后坡度AB与前坡度AC相等,
    ∴∠BAD=∠CAE,
    ∵∠BAC=120°,
    ∴∠BAD=∠CAE=30°,
    在直角△ABD中,AB=4米,
    ∴BD=2米,
    在直角△ACE中,AC=6米,
    ∴CE=3米,
    ∴a-b=1米.
    【点睛】
    本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.
    23、x取0时,为1 或x取1时,为2
    【解析】
    试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.
    试题解析:解:原式=[]
    =
    =
    = x+1,
    ∵x1-4≠0,x-2≠0,
    ∴x≠1且x≠-1且x≠2,
    当x=0时,原式=1.
    或当x=1时,原式=2.
    24、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.
    【解析】
    分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;
    (2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;
    (3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.
    详解:(1)依题意得:,解得:,
    ∴抛物线的解析式为.
    ∵对称轴为,且抛物线经过,
    ∴把、分别代入直线,
    得,解之得:,
    ∴直线的解析式为.

    (2)直线与对称轴的交点为,则此时的值最小,把代入直线得,
    ∴.即当点到点的距离与到点的距离之和最小时的坐标为.
    (注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).
    (3)设,又,,
    ∴,,,
    ①若点为直角顶点,则,即:解得:,
    ②若点为直角顶点,则,即:解得:,
    ③若点为直角顶点,则,即:解得:
    ,.
    综上所述的坐标为或或或.
    点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.

    相关试卷

    甘肃省重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份甘肃省重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,化简•a5所得的结果是, 1分等内容,欢迎下载使用。

    2021-2022学年山西省怀仁市重点达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年山西省怀仁市重点达标名校初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了sin60°的值为,下列各数中负数是等内容,欢迎下载使用。

    2021-2022学年四川省成都市温江区重点达标名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年四川省成都市温江区重点达标名校初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了如图,能判定EB∥AC的条件是,如图,双曲线y=,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map