甘肃省张掖市高台县2021-2022学年中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将(x+3)2﹣(x﹣1)2分解因式的结果是( )
A.4(2x+2) B.8x+8 C.8(x+1) D. 4(x+1)
2.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )
A.60° B.45° C.15° D.90°
3.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )
A. B.π C. D.3
4.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )
A.3 B.﹣3 C.6 D.﹣6
5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是( )
A.6 B.8 C.10 D.12
6.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是
A.8 B.9 C.10 D.12
7.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
8.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是( )
A.﹣5 B. C. D.7
9.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为( )
A.20 B.16 C.12 D.8
10.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )
A. B. C. D.
11.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )
A. B. C. D.
12.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=( )
A.﹣1 B.4 C.﹣4 D.1
14.下面是用棋子摆成的“上”字:
如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.
15.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).
16.若向北走5km记作﹣5km,则+10km的含义是_____.
17.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.
18.分解因式:= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
(1)求m的值及一次函数解析式;
(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.
20.(6分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.
21.(6分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
22.(8分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.求k和b的值;求△OAB的面积.
23.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
24.(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.
25.(10分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
求证:是⊙的切线;若,且,求⊙的半径与线段的长.
26.(12分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
27.(12分)某商城销售A,B两种自行车型自行车售价为2 100元辆,B型自行车售价为1 750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
求每辆A,B两种自行车的进价分别是多少?
现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
直接利用平方差公式分解因式即可.
【详解】
(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).
故选C.
【点睛】
此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.
2、C
【解析】
试题解析:∵sin∠CAB=
∴∠CAB=45°.
∵,
∴∠C′AB′=60°.
∴∠CAC′=60°-45°=15°,
鱼竿转过的角度是15°.
故选C.
考点:解直角三角形的应用.
3、B
【解析】
∵四边形AECD是平行四边形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等边三角形,
∴∠B=60°,
∴的弧长=.
故选B.
4、D
【解析】
试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.
考点:反比例函数系数k的几何意义.
5、B
【解析】
分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
详解:如图,过点D作DE⊥AB于E,
∵AB=8,CD=2,
∵AD是∠BAC的角平分线,
∴DE=CD=2,
∴△ABD的面积
故选B.
点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
6、A
【解析】
试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.
解:设这个多边形的外角为x°,则内角为3x°,
由题意得:x+3x=180,
解得x=45,
这个多边形的边数:360°÷45°=8,
故选A.
考点:多边形内角与外角.
7、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、C
【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.
【详解】
把(-2,0)和(0,1)代入y=kx+b,得
,
解得
所以,一次函数解析式y=x+1,
再将A(3,m)代入,得
m=×3+1=.
故选C.
【点睛】
本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.
9、B
【解析】
首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,
∵AE=EB,
∴OE=BC,
∵AE+EO=4,
∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=16,
故选:B.
【点睛】
本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握
三角形的中位线定理,属于中考常考题型.
10、B
【解析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.
【详解】
∵这组数中无理数有,共2个,
∴卡片上的数为无理数的概率是 .
故选B.
【点睛】
本题考查了无理数的定义及概率的计算.
11、B
【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF=.
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,
∵,
∴,
∴BH=,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF== .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
12、D
【解析】
解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b
即可.
【详解】
∵点A(a,3)与点B(﹣4,b)关于原点对称,
∴a=4,b=﹣3,
∴a+b=1,
故选D.
【点睛】
考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.
14、4n+2
【解析】
∵第1个有:6=4×1+2;
第2个有:10=4×2+2;
第3个有:14=4×3+2;
……
∴第1个有: 4n+2;
故答案为4n+2
15、
【解析】
解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).
故答案是:.
16、向南走10km
【解析】
分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.
详解:∵ 向北走5km记作﹣5km,
∴ +10km表示向南走10km.
故答案是:向南走10km.
点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.
17、1
【解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
【详解】
根据题意,作△EFC,
树高为CD,且∠ECF=90°,ED=3,FD=12,
易得:Rt△EDC∽Rt△DCF,
有,即DC2=ED×FD,
代入数据可得DC2=31,
DC=1,
故答案为1.
18、a(a+2)(a-2)
【解析】
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)m=2;y=x+;(2)P点坐标是(﹣,).
【解析】
(1)利用待定系数法求一次函数和反比例函数的解析式;
(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
【详解】
解:(1)∵反比例函数的图象过点
∴
∵点B(﹣1,m)也在该反比例函数的图象上,
∴﹣1•m=﹣2,
∴m=2;
设一次函数的解析式为y=kx+b,
由y=kx+b的图象过点A,B(﹣1,2),则
解得:
∴一次函数的解析式为
(2)连接PC、PD,如图,设
∵△PCA和△PDB面积相等,
∴
解得:
∴P点坐标是
【点睛】
本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
20、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
21、1米.
【解析】
试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.
试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=1.
答:塔杆CH的高为1米.
点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
22、(1)k=10,b=3;(2).
【解析】
试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.
试题解析:(1)、把x=2,y=5代入y=,得k==2×5=10
把x=2,y=5代入y=x+b,得b=3
(2)、∵y=x+3 ∴当y=0时,x=-3, ∴OB=3 ∴S=×3×5=7.5
考点:一次函数与反比例函数的综合问题.
23、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
24、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.
【解析】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;
(2)把(1)中的数据代入求值即可.
【详解】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.
答:一个A品牌的足球需40元,则一个B品牌的足球需100元;
(2)依题意得:20×40+2×100=1(元).
答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.
考点:二元一次方程组的应用.
25、(1)证明参见解析;(2)半径长为,=.
【解析】
(1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
【详解】
解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.
【点睛】
1.圆的切线的判定;2.锐角三角函数的应用.
26、(1)见解析
(2)图中阴影部分的面积为π.
【解析】
(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
【详解】
(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴图中阴影部分的面积为:-.
27、(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【解析】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;
(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.
【详解】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,
根据题意,得=,
解得x=1600,
经检验,x=1600是原方程的解,
x+10=1 600+10=2 000,
答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;
(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
根据题意,得,
解得:33≤m≤1,
∵m为正整数,
∴m=34,35,36,37,38,39,1.
∵y=﹣50m+15000,k=﹣50<0,
∴y随m的增大而减小,∴当m=34时,y有最大值,
最大值为:﹣50×34+15000=13300(元).
答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【点睛】
本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.
2022年甘肃省张掖市高台县中考数学对点突破模拟试卷含解析: 这是一份2022年甘肃省张掖市高台县中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了正比例函数y=,下列运算正确的是等内容,欢迎下载使用。
2022年甘肃省张掖市高台县重点名校中考数学模拟精编试卷含解析: 这是一份2022年甘肃省张掖市高台县重点名校中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是,若,则的值为,若分式的值为0,则x的值为等内容,欢迎下载使用。
2022年甘肃省高台县中考一模数学试题含解析: 这是一份2022年甘肃省高台县中考一模数学试题含解析,共19页。试卷主要包含了已知点A,已知等内容,欢迎下载使用。