年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广东惠州市惠阳区2021-2022学年中考数学押题试卷含解析

    广东惠州市惠阳区2021-2022学年中考数学押题试卷含解析第1页
    广东惠州市惠阳区2021-2022学年中考数学押题试卷含解析第2页
    广东惠州市惠阳区2021-2022学年中考数学押题试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东惠州市惠阳区2021-2022学年中考数学押题试卷含解析

    展开

    这是一份广东惠州市惠阳区2021-2022学年中考数学押题试卷含解析,共19页。试卷主要包含了在平面直角坐标系中,已知点A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(     )
    A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5
    2.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是(  )

    A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米
    C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米
    3.对于不等式组,下列说法正确的是(  )
    A.此不等式组的正整数解为1,2,3
    B.此不等式组的解集为
    C.此不等式组有5个整数解
    D.此不等式组无解
    4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是(  )

    A.15° B.22.5° C.30° D.45°
    5.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是(  )

    A. B. C. D.
    6.人的头发直径约为0.00007m,这个数据用科学记数法表示(  )
    A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105
    7.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( )
    A.甲 B.乙 C.丙 D.都一样
    8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为(  )

    A.﹣12 B.﹣32 C.32 D.﹣36
    9.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是(  )
    A.(﹣2,1) B.(﹣8,4)
    C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
    10.如图是某几何体的三视图及相关数据,则该几何体的全面积是(  )

    A.15π B.24π C.20π D.10π
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.
    12.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.

    13.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .

    14.如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_____.

    15.已知△ABC中,∠C=90°,AB=9,,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.
    16.因式分解:2b2a2﹣a3b﹣ab3=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形

    18.(8分)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.
    (1)如图①,求∠ODE的大小;
    (2)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.

    19.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    20.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.

    21.(8分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.

    22.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.
    (1)求点C和点A的坐标.
    (2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),
    ①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;
    ②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;
    ③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.

    23.(12分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.

    请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
    24.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.

    (1)求证:△PFA∽△ABE;
    (2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
    (3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:   .



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.
    详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,
    ∴4=|2a+2|,a+2≠3,
    解得:a=−3,
    故选A.
    点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.
    2、C
    【解析】
    解:A.小丽从家到达公园共用时间20分钟,正确;
    B.公园离小丽家的距离为2000米,正确;
    C.小丽在便利店时间为15﹣10=5分钟,错误;
    D.便利店离小丽家的距离为1000米,正确.
    故选C.
    3、A
    【解析】
    解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
    点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    4、A
    【解析】
    试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.

    考点:平行线的性质.
    5、D
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
    【详解】
    ∵CD是AB边上的中线,
    ∴CD=AD,
    ∴∠A=∠ACD,
    ∵∠ACB=90°,BC=6,AC=8,
    ∴tan∠A=,
    ∴tan∠ACD的值.
    故选D.
    【点睛】
    本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
    6、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.00007m,这个数据用科学记数法表示7×10﹣1.
    故选:B.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    7、B
    【解析】
    根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.
    【详解】
    解:降价后三家超市的售价是:
    甲为(1-20%)2m=0.64m,
    乙为(1-40%)m=0.6m,
    丙为(1-30%)(1-10%)m=0.63m,
    ∵0.6m<0.63m<0.64m,
    ∴此时顾客要购买这种商品最划算应到的超市是乙.
    故选:B.
    【点睛】
    此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.
    8、B
    【解析】
    解:
    ∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
    ∴OA=5,AB∥OC,
    ∴点B的坐标为(8,﹣4),
    ∵函数y=(k<0)的图象经过点B,
    ∴﹣4=,得k=﹣32.
    故选B.
    【点睛】
    本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
    9、D
    【解析】
    根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
    【详解】
    ∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
    ∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
    故选D.
    【点睛】
    此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
    10、B
    【解析】
    解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×()2=9π,圆锥的侧面积=×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.
    点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    仿照已知方法求出所求即可.
    【详解】
    令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.
    故答案为:.
    【点睛】
    本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
    12、1
    【解析】
    首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
    【详解】
    ∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
    ∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
    ∴AB=AC,
    ∵∠BPC=90°,
    ∴PA=AB=AC=a,
    如图延长AD交⊙D于P′,此时AP′最大,
    ∵A(1,0),D(4,4),
    ∴AD=5,
    ∴AP′=5+1=1,
    ∴a的最大值为1.
    故答案为1.

    【点睛】
    圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
    13、300π
    【解析】
    试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π, ∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r, 则=20π, 解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π
    考点:(1)、圆锥的计算;(2)、扇形面积的计算
    14、-3
    【解析】

    设A(a, a+4),B(c, c+4),则
    解得: x+4=,即x2+4x−k=0,
    ∵直线y=x+4与双曲线y=相交于A、B两点,
    ∴a+c=−4,ac=-k,
    ∴(c−a)2=(c+a)2−4ac=16+4k,
    ∵AB=,
    ∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=()2,
    2 (c−a)2=8,
    (c−a)2=4,
    ∴16+4k =4,
    解得:k=−3,
    故答案为−3.
    点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.
    15、4
    【解析】
    过点C作CH⊥AB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA'的值,然后利用旋转的性质可判定△ACA'∽△BCB',继而利用相似三角形的对应边成比例的性质可得出BB'的值.
    【详解】
    解:过点C作CH⊥AB于H,

    ∵在Rt△ABC中,∠C=90,cosA= ,
    ∴AC=AB•cosA=6,BC=3 ,
    在Rt△ACH中,AC=6,cosA=,
    ∴AH=AC•cosA=4,
    由旋转的性质得,AC=A'C,BC=B'C,
    ∴△ACA'是等腰三角形,因此H也是AA'中点,
    ∴AA'=2AH=8,
    又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,
    ∴∠ACA'=∠BCB',
    ∴△ACA'∽△BCB',
    ∴即 ,
    解得:BB'=4.
    故答案为:4.
    【点睛】
    此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出△ACA'∽△BCB'.
    16、﹣ab(a﹣b)2
    【解析】
    首先确定公因式为ab,然后提取公因式整理即可.
    【详解】
    2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.
    【点睛】
    本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.

    三、解答题(共8题,共72分)
    17、详见解析.
    【解析】
    四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形.
    【详解】
    证明:在四边形ABCD中,OA=OC,OB=OD,
    ∴四边形ABCD是平行四边形,
    ∵OA=OB=OC=OD,
    又∵AC=AO+OC,BD=OB+DO,
    ∴AC=BD,
    ∴平行四边形是矩形,
    在△AOB中,,

    ∴△AOB是直角三角形,即AC⊥BD,
    ∴矩形ABCD是正方形.
    【点睛】
    本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强.
    18、(1)∠ODE=90°;(2)∠A=45°.
    【解析】
    分析:(Ⅰ)连接OE,BD,利用全等三角形的判定和性质解答即可;
    (Ⅱ)利用中位线的判定和定理解答即可.
    详解:(Ⅰ)连接OE,BD.
    ∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°.
    ∵E点是BC的中点,∴DE=BC=BE.
    ∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.
    ∵∠ABC=90°,∴∠ODE=90°;
    (Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位线,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.
    ∵OA=OD,∴∠A=∠ADO=.

    点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答.
    19、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    20、∠CMA =35°.
    【解析】
    根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
    【详解】
    ∵AB∥CD,∴∠ACD+∠CAB=180°.
    又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
    又∵AB∥CD,∴∠CMA=∠BAM=35°.
    【点睛】
    本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
    21、
    【解析】
    试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.
    试题解析:过O作OF⊥CD,交CD于点F,连接OD,
    ∴F为CD的中点,即CF=DF,
    ∵AE=2,EB=6,
    ∴AB=AE+EB=2+6=8,
    ∴OA=4,
    ∴OE=OA﹣AE=4﹣2=2,
    在Rt△OEF中,∠DEB=30°,
    ∴OF=OE=1,
    在Rt△ODF中,OF=1,OD=4,
    根据勾股定理得:DF==,
    则CD=2DF=2.

    考点:垂径定理;勾股定理.
    22、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)
    【解析】
    (1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;
    (2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.
    【详解】
    (1)令y=0得:x2-1x+3=0,解得:x=1或x=3,
    ∴A(1,0),B(3,0),
    ∴抛物线的对称轴为x=2,
    将x=2代入抛物线的解析式得:y=-1,
    ∴C(2,-1);
    (2)①将x=0代入抛物线的解析式得:y=3,
    ∴抛物线与y轴交点坐标为(0,3),
    如图所示:作直线y=3,

    由图象可知:直线y=3与“L双抛图形”有3个交点,
    故答案为3;
    ②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,
    由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,
    故答案为0<t<1.
    ③如图2所示:

    ∵PQ∥AC且PQ=AC,
    ∴四边形ACQP为平行四边形,
    又∵点C的纵坐标为-1,
    ∴点P的纵坐标为1,
    将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.
    ∴点P的坐标为(+2,1)或(-+2,1),
    当点P(-1,0)时,也满足条件.
    综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.
    23、(1)10;(2)0.9;(3)44%
    【解析】
    (1)把条形统计图中每天的访问量人数相加即可得出答案;
    (2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
    (3)根据增长率的算数列出算式,再进行计算即可.
    【详解】
    (1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
    故答案为10;
    (2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
    ∴星期日学生日访问总量为:3×30%=0.9(万人次);
    故答案为0.9;
    (3)周六到周日学生访问该网站的日平均增长率为:=44%;
    故答案为44%.
    考点:折线统计图;条形统计图
    24、(1)证明见解析;(2)3或.(3)或0<
    【解析】
    (1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
    (2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
    (3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴AD∥BC.

    ∴∠PAF=∠AEB.
    又∵PF⊥AE,

    ∴△PFA∽△ABE.
    (2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
    则有PE∥AB
    ∴四边形ABEP为矩形,
    ∴PA=EB=3,即x=3.
    情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
    ∵∠PAF=∠AEB,
    ∴∠PEF=∠PAF.
    ∴PE=PA.
    ∵PF⊥AE,
    ∴点F为AE的中点,




    ∴满足条件的x的值为3或
    (3) 或
    【点睛】
    两组角对应相等,两三角形相似.

    相关试卷

    2024年广东省惠州市惠阳区中考数学一模试卷(含解析):

    这是一份2024年广东省惠州市惠阳区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省惠州市惠阳区中考数学二模试卷(含解析):

    这是一份2023年广东省惠州市惠阳区中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省惠州市惠阳区中考数学一模试卷(含解析):

    这是一份2023年广东省惠州市惠阳区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map