


广东深圳市莲花中学2022年中考数学仿真试卷含解析
展开这是一份广东深圳市莲花中学2022年中考数学仿真试卷含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在下列函数中,其图象与x轴没有交点的是( )
A.y=2x B.y=﹣3x+1 C.y=x2 D.y=
2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为( )
A.1 B.﹣1 C.±1 D.0
3.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )
A.无法求出 B.8 C.8 D.16
4.下列说法中,错误的是( )
A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似
C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似
5.下列运算正确的是( )
A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
6.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
7.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( )
A. B.2 C.2 D.4
8.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A.1,2,3 B.1,1, C.1,1, D.1,2,
9.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
10.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= ___________°.
12.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
13.化简:=_____.
14.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.
15.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.
16.若a、b为实数,且b=+4,则a+b=_____.
17.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.
三、解答题(共7小题,满分69分)
18.(10分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.
19.(5分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
20.(8分)我们来定义一种新运算:对于任意实数 x、y,“※”为 a※b=(a+1)(b+1)﹣1.
(1)计算(﹣3)※9
(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误)
(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.
21.(10分)解不等式组,并把它的解集表示在数轴上.
22.(10分)如图,要修一个育苗棚,棚的横截面是,棚高,长,棚顶与地面的夹角为.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:,,)
23.(12分) “千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:
请根据图中提供的信息,解答下列问题:
(1)求被调查的学生总人数;
(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.
24.(14分)先化简,再求值:,其中的值从不等式组的整数解中选取.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可.
【详解】
A.正比例函数y=2x与x轴交于(0,0),不合题意;
B.一次函数y=-3x+1与x轴交于(,0),不合题意;
C.二次函数y=x2与x轴交于(0,0),不合题意;
D.反比例函数y=与x轴没有交点,符合题意;
故选D.
2、B
【解析】
根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.
【详解】
解:把x=0代入方程得:a2﹣1=0,
解得:a=±1,
∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,
∴a﹣1≠0,
即a≠1,
∴a的值是﹣1.
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.
3、D
【解析】
试题分析:设AB于小圆切于点C,连接OC,OB.
∵AB于小圆切于点C,
∴OC⊥AB,
∴BC=AC=AB=×8=4cm.
∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)
又∵直角△OBC中,OB2=OC2+BC2
∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.
故选D.
考点:1.垂径定理的应用;2.切线的性质.
4、B
【解析】
根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.
【详解】
解:A、两个全等的三角形一定相似,正确;
B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;
C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;
D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.
故选B.
【点睛】
本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.
5、B
【解析】
根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.
【详解】
解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;
B、(﹣2a3)2=4a6,正确;
C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;
D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.
故选B.
【点睛】
本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.
6、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
7、B
【解析】
圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
【详解】
解:∵圆内接正六边形的边长是1,
∴圆的半径为1.
那么直径为2.
圆的内接正方形的对角线长为圆的直径,等于2.
∴圆的内接正方形的边长是1.
故选B.
【点睛】
本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
8、D
【解析】
根据三角形三边关系可知,不能构成三角形,依此即可作出判定;
B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
【详解】
∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=()2,是等腰直角三角形,故选项错误;
C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
故选D.
9、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
10、C
【解析】
试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.
故选C.
考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分线DE交AC于点D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.
12、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
【解析】
让横坐标、纵坐标为负数即可.
【详解】
在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
13、
【解析】
先算除法,再算减法,注意把分式的分子分母分解因式
【详解】
原式=
=
=
【点睛】
此题考查分式的混合运算,掌握运算法则是解题关键
14、k>2
【解析】
根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.
【详解】
因为抛物线y=(k﹣2)x2+k的开口向上,
所以k﹣2>1,即k>2,
故答案为k>2.
【点睛】
本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.
15、m
【解析】
由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
【详解】
在Rt△ADC中,∠ACD=60°,AD=4
∴tan60°==
∴CD=
∵在Rt△BCD中,∠BAD=45∘,CD=
∴BD=CD=.
∴AB=AD-BD=4-=
路况警示牌AB的高度为m.
故答案为:m.
【点睛】
解直角三角形的应用-仰角俯角问题.
16、5或1
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案.
【详解】
由被开方数是非负数,得
,
解得a=1,或a=﹣1,b=4,
当a=1时,a+b=1+4=5,
当a=﹣1时,a+b=﹣1+4=1,
故答案为5或1.
【点睛】
本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
17、
【解析】
分析:
根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.
详解:
设他推车步行的时间为x分钟,根据题意可得:
80x+250(15-x)=2900.
故答案为80x+250(15-x)=2900.
点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.
三、解答题(共7小题,满分69分)
18、(1);(2)1.
【解析】
(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;
(2)根据EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根据S=x(12﹣x)=﹣(x﹣6)2+1,可得当x=6时,S有最大值为1.
【详解】
解:(1)∵△AEF∽△ABC,
∴,
∵边BC长为18,高AD长为12,
∴=;
(2)∵EH=KD=x,
∴AK=12﹣x,EF=(12﹣x),
∴S=x(12﹣x)=﹣(x﹣6)2+1.
当x=6时,S有最大值为1.
【点睛】
本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.
19、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
20、(1)-21;(2)正确;(3)运算“※”满足结合律
【解析】
(1)根据新定义运算法则即可求出答案.
(2)只需根据整式的运算证明法则a※b=b※a即可判断.
(3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.
【详解】
(1)(-3)※9=(-3+1)(9+1)-1=-21
(2)a※b=(a+1)(b+1)-1
b※a=(b+1)(a+1)-1,
∴a※b=b※a,
故满足交换律,故她判断正确;
(3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b
∵(a※b)※c=(ab+a+b)※c
=(ab+a+b+1)(c+1)-1
=abc+ac+ab+bc+a+b+c
∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c
∴(a※b)※c=a※(b※c)
∴运算“※”满足结合律
【点睛】
本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.
21、不等式组的解是x≥3;图见解析
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵解不等式①,得x≥3,
解不等式②,得x≥-1.5,
∴不等式组的解是x≥3,
在数轴上表示为:
.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
22、33.3
【解析】
根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可.
【详解】
解:∵AC= ===
∴矩形面积=10≈33.3(平方米)
答:覆盖在顶上的塑料薄膜需33.3平方米
【点睛】
本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.
23、(1)40;(2)想去D景点的人数是8,圆心角度数是72°;(3)280.
【解析】
(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;
(3)用800乘以样本中最想去B景点的人数所占的百分比即可.
【详解】
(1)被调查的学生总人数为8÷20%=40(人);
(2)最想去D景点的人数为40-8-14-4-6=8(人),
补全条形统计图为:
扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;
(3)800×=280,
所以估计“醉美旅游景点B“的学生人数为280人.
【点睛】
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.
24、-2.
【解析】
试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.
试题解析:原式=
==
解得-1≤x<,
∴不等式组的整数解为-1,0,1,2
若分式有意义,只能取x=2,
∴原式=-=-2
【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.
相关试卷
这是一份2022-2023学年广东省深圳市福田区莲花中学八年级(上)期末数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省深圳市坪山区中学山中学2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了下列计算正确的是,一元二次方程2=1的解为,有下列四个命题,下列各数,有下列四种说法等内容,欢迎下载使用。
这是一份广东省深圳市坪山区2022年中考数学仿真试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,不等式组的解集为等内容,欢迎下载使用。