|试卷下载
搜索
    上传资料 赚现金
    广西柳州市十二中学市级名校2021-2022学年中考数学押题试卷含解析
    立即下载
    加入资料篮
    广西柳州市十二中学市级名校2021-2022学年中考数学押题试卷含解析01
    广西柳州市十二中学市级名校2021-2022学年中考数学押题试卷含解析02
    广西柳州市十二中学市级名校2021-2022学年中考数学押题试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西柳州市十二中学市级名校2021-2022学年中考数学押题试卷含解析

    展开
    这是一份广西柳州市十二中学市级名校2021-2022学年中考数学押题试卷含解析,共25页。试卷主要包含了函数的自变量x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )

    A. B. C. D.
    2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为(  )

    A.31cm B.41cm C.51cm D.61cm
    3.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    4.等腰三角形一边长等于5,一边长等于10,它的周长是( )
    A.20 B.25 C.20或25 D.15
    5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )

    A.1个 B.2个 C.3个 D.4个
    6.函数的自变量x的取值范围是( )
    A. B. C. D.
    7.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
    甲的路线为:A→C→B;
    乙的路线为:A→D→E→F→B,其中E为AB的中点;
    丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
    若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为(  )

    A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
    8.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
    A. B. C. D.
    9.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )

    A.34° B.56° C.66° D.146°
    10.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=(  )

    A. B.1 C. D.
    11.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
    A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
    12.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为(  )
    A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×1010
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为    .

    14.计算﹣的结果为_____.
    15.如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到__边上,小球P与正方形的边完成第5次碰撞所经过的路程为__.

    16.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.
    17.分解因式______.
    18.计算的结果等于______________________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)探究:
    在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手   次:;若参加聚会的人数为5,则共握手   次;若参加聚会的人数为n(n为正整数),则共握手   次;若参加聚会的人共握手28次,请求出参加聚会的人数.
    拓展:
    嘉嘉给琪琪出题:
    “若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
    琪琪的思考:“在这个问题上,线段总数不可能为30”
    琪琪的思考对吗?为什么?
    20.(6分)如图所示,在中,,
    (1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)
    (2)连接AP当为多少度时,AP平分.

    21.(6分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
    (1)本次调查了   名学生,扇形统计图中“1部”所在扇形的圆心角为   度,并补全条形统计图;
    (2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;
    (3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.

    22.(8分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C.

    (1)求点 A 的坐标;
    (2)结合函数的图象,求当 y<0 时,x 的取值范围.
    23.(8分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
    (1)求点B的坐标和反比例函数的关系式;
    (2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.

    24.(10分)如图,在△ABC中,AB=AC,∠ABC=72°.

    (1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
    (2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
    25.(10分)先化简,再求值:()÷,其中a=+1.
    26.(12分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.
    (1)求抛物线的函数关系式;
    (2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
    (3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.

    27.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
    【详解】
    解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
    后面一排分别有2个、3个、1个小正方体搭成三个长方体,
    并且这两排右齐,故从正面看到的视图为:

    故选:C.
    【点睛】
    本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
    2、C
    【解析】
    ∵DG是AB边的垂直平分线,
    ∴GA=GB,
    △AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
    ∴△ABC的周长=AC+BC+AB=51cm,
    故选C.
    3、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    4、B
    【解析】
    题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.
    【详解】
    当5为腰时,三边长为5、5、10,而,此时无法构成三角形;
    当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长
    故选B.
    5、B
    【解析】
    解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
    故选B.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
    6、D
    【解析】
    根据二次根式的意义,被开方数是非负数.
    【详解】
    根据题意得,
    解得.
    故选D.
    【点睛】
    本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负数.
    7、A
    【解析】
    分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
    详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
    ∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
    图3与图1中,三个三角形相似,所以 ====.
    ∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
    ∴甲=丙.∴甲=乙=丙.
    故选A.

    点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
    8、B
    【解析】
    分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
    详解:画树状图,得

    ∴共有8种情况,经过每个路口都是绿灯的有一种,
    ∴实际这样的机会是.
    故选B.
    点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
    9、B
    【解析】
    分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
    详解:∵直线a∥b,∴∠2+∠BAD=180°.
    ∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
    故选B.

    点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
    10、D
    【解析】
    由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
    【详解】
    如图,连接AC交BE于点O,
    ∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
    ∴AB=BE,
    ∵四边形AEHB为菱形,
    ∴AE=AB,
    ∴AB=AE=BE,
    ∴△ABE是等边三角形,
    ∵AB=3,AD=,
    ∴tan∠CAB=,
    ∴∠BAC=30°,
    ∴AC⊥BE,
    ∴C在对角线AH上,
    ∴A,C,H共线,
    ∴AO=OH=AB=,
    ∵OC=BC=,
    ∵∠COB=∠OBG=∠G=90°,
    ∴四边形OBGM是矩形,
    ∴OM=BG=BC=,
    ∴HM=OH﹣OM=,
    故选D.

    【点睛】
    本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
    11、C
    【解析】
    试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
    考点:科学记数法.
    12、D
    【解析】
    根据科学记数法的定义可得到答案.
    【详解】
    338亿=33800000000=,
    故选D.
    【点睛】
    把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、7
    【解析】
    试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
    ∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
    ∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
    又∵∠B=∠C=60°,∴△ABD∽△DCE.
    ∴,即.
    ∴.
    14、.
    【解析】
    根据同分母分式加减运算法则化简即可.
    【详解】
    原式=,
    故答案为.
    【点睛】
    本题考查了分式的加减运算,熟记运算法则是解题的关键.
    15、AB,
    【解析】
    根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.
    【详解】
    根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得,
    第二次碰撞点为G,在AB上,且AG=AB,
    第三次碰撞点为H,在AD上,且AH=AD,
    第四次碰撞点为M,在DC上,且DM=DC,
    第五次碰撞点为N,在AB上,且BN=AB,
    第六次回到E点,BE=BC.
    由勾股定理可以得出EF=,FG= ,GH= ,HM=,MN= ,NE= ,
    故小球第5次经过的路程为:+ + ++ = ,
    故答案为AB, .
    【点睛】
    本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.
    16、1
    【解析】
    观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.
    【详解】
    由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,
    个位数字1,3,1,5循环出现,四个一组,
    2019÷4=504…3,
    ∴22019﹣1的个位数是1.
    故答案为1.
    【点睛】
    本题考查数的循环规律,确定循环规律,找准余数是解题的关键.
    17、(x+y+z)(x﹣y﹣z).
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题后三项可以为一组组成完全平方式,再用平方差公式即可.
    【详解】
    x2-y2-z2-2yz,
    =x2-(y2+z2+2yz),
    =x2-(y+z)2,
    =(x+y+z)(x-y-z).
    故答案为(x+y+z)(x-y-z).
    【点睛】
    本题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.
    18、
    【解析】
    根据完全平方式可求解,完全平方式为
    【详解】

    【点睛】
    此题主要考查二次根式的运算,完全平方式的正确运用是解题关键

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
    【解析】
    探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
    (2)由(1)的结论结合参会人数为n,即可得出结论;
    (3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
    拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
    【详解】
    探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
    故答案为3;1.
    (2)∵参加聚会的人数为n(n为正整数),
    ∴每人需跟(n-1)人握手,
    ∴握手总数为.
    故答案为.
    (3)依题意,得:=28,
    整理,得:n2-n-56=0,
    解得:n1=8,n2=-7(舍去).
    答:参加聚会的人数为8人.
    拓展:琪琪的思考对,理由如下:
    如果线段数为2,则由题意,得:=2,
    整理,得:m2-m-60=0,
    解得m1=,m2=(舍去).
    ∵m为正整数,
    ∴没有符合题意的解,
    ∴线段总数不可能为2.
    【点睛】
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
    20、(1)详见解析;(2)30°.
    【解析】
    (1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
    (2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
    【详解】
    (1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
    ∵EF为AB的垂直平分线,
    ∴PA=PB,
    ∴点P即为所求.

    (2)如图,连接AP,
    ∵,
    ∴,
    ∵AP是角平分线,
    ∴,
    ∴,
    ∵,
    ∴∠PAC+∠PAB+∠B=90°,
    ∴3∠B=90°,
    解得:∠B=30°,
    ∴当时,AP平分.

    【点睛】
    本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
    21、(1)40、126(2)240人(3)
    【解析】
    (1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;
    (2)用1600乘以4部所占的百分比即可;
    (3)根据树状图所得的结果,判断他们选中同一名著的概率.
    【详解】
    (1)调查的总人数为:10÷25%=40,
    ∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,
    则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;

    故答案为40、126;
    (2)预估其中4部都读完了的学生有1600×=240人;
    (3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,
    画树状图可得:

    共有16种等可能的结果,其中选中同一名著的有4种,
    故P(两人选中同一名著)==.
    【点睛】
    本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.
    22、(1);(2)
    【解析】
    (1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;
    (2)先求出抛物线图象与x轴的两个交点,结合图象即可得出.
    【详解】
    解:(1)当时,函数的值为-2,
    ∴点的坐标为
    ∵四边形为矩形,

    解方程,得.
    ∴点的坐标为.
    ∴点的坐标为.
    (2)解方程,得.
    由图象可知,当时,的取值范围是.
    【点睛】
    本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.
    23、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
    【解析】
    试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
    (2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
    试题解析:(1)过点A作AP⊥x轴于点P,

    则AP=1,OP=2,
    又∵AB=OC=3,
    ∴B(2,4).,
    ∵反比例函数y= (x>0)的图象经过的B,
    ∴4=,
    ∴k=8.
    ∴反比例函数的关系式为y=;
    (2)①由点A(2,1)可得直线OA的解析式为y=x.
    解方程组,得,.
    ∵点D在第一象限,
    ∴D(4,2).
    由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
    ②把y=0代入y=-x+6,解得x=6,
    ∴E(6,0),
    过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
    由勾股定理可得:ED=.
    点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.
    24、(1)作图见解析(2)∠BDC=72°
    【解析】
    解:(1)作图如下:

    (2)∵在△ABC中,AB=AC,∠ABC=72°,
    ∴∠A=180°﹣2∠ABC=180°﹣144°=36°.
    ∵AD是∠ABC的平分线,∴∠ABD=∠ABC=×72°=36°.
    ∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.
    (1)根据角平分线的作法利用直尺和圆规作出∠ABC的平分线:
    ①以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;
    ②分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D.
    (2)先根据等腰三角形的性质及三角形内角和定理求出∠A的度数,再由角平分线的性质得出
    ∠ABD的度数,再根据三角形外角的性质得出∠BDC的度数即可.
    25、,.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解: ()÷
    =
    =
    =
    =,
    当a=+1时,原式==.
    【点睛】
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    26、(1)y=﹣x2﹣x+3;(2)点P的坐标为(﹣,1);(3)当AM+CN的值最大时,点D的坐标为(,).
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;
    (2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;
    (3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.
    【详解】
    (1)∵直线y=x+3与x轴、y轴分别交于A、C两点,
    ∴点A的坐标为(﹣4,0),点C的坐标为(0,3).
    ∵点B在x轴上,点B的横坐标为,
    ∴点B的坐标为(,0),
    设抛物线的函数关系式为y=ax2+bx+c(a≠0),
    将A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:
    ,解得: ,
    ∴抛物线的函数关系式为y=﹣x2﹣x+3;
    (2)如图1,过点P作PE⊥x轴,垂足为点E,
    ∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,
    ∴CP=2AP,
    ∵PE⊥x轴,CO⊥x轴,
    ∴△APE∽△ACO,
    ∴,
    ∴AE=AO=,PE=CO=1,
    ∴OE=OA﹣AE=,
    ∴点P的坐标为(﹣,1);
    (3)如图2,连接AC交OD于点F,
    ∵AM⊥OD,CN⊥OD,
    ∴AF≥AM,CF≥CN,
    ∴当点M、N、F重合时,AM+CN取最大值,
    过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,
    ∴,
    ∴设点D的坐标为(﹣3t,4t).
    ∵点D在抛物线y=﹣x2﹣x+3上,
    ∴4t=﹣3t2+t+3,
    解得:t1=﹣(不合题意,舍去),t2=,
    ∴点D的坐标为(,),
    故当AM+CN的值最大时,点D的坐标为(,).

    【点睛】
    本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).
    27、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).

    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,

    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.

    相关试卷

    黄金卷市级名校2021-2022学年中考数学押题试卷含解析: 这是一份黄金卷市级名校2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,计算36÷,下列各式等内容,欢迎下载使用。

    广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析: 这是一份广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,的相反数是等内容,欢迎下载使用。

    广西柳州市十二中学市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份广西柳州市十二中学市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了下列运算正确的是,下列分式中,最简分式是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map