广西南宁市2022年中考数学押题试卷含解析
展开
这是一份广西南宁市2022年中考数学押题试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下面说法正确的个数有等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1:3 B.1:4 C.1:5 D.1:6
2.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于
A.90° B.180° C.210° D.270°
3.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是( )
A. B.
C. D.
4.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( )
学生数(人)
5
8
14
19
4
时间(小时)
6
7
8
9
10
A.14,9 B.9,9 C.9,8 D.8,9
5.已知a=(+1)2,估计a的值在( )
A.3 和4之间 B.4和5之间 C.5和6之间 D.6和7之间
6.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是( )
百合花
玫瑰花
小华
6支
5支
小红
8支
3支
A.2支百合花比2支玫瑰花多8元
B.2支百合花比2支玫瑰花少8元
C.14支百合花比8支玫瑰花多8元
D.14支百合花比8支玫瑰花少8元
7.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )
A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×1014
8.下面说法正确的个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
④如果∠A=∠B=∠C,那么△ABC是直角三角形;
⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
A.3个 B.4个 C.5个 D.6个
9.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
10.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )
A.①的收入去年和前年相同
B.③的收入所占比例前年的比去年的大
C.去年②的收入为2.8万
D.前年年收入不止①②③三种农作物的收入
二、填空题(共7小题,每小题3分,满分21分)
11.函数的图象不经过第__________象限.
12.在△ABC中,∠C=90°,若tanA=,则sinB=______.
13.方程的解为__________.
14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
设每头牛值金x两,每只羊值金y两,可列方程组为_____.
15.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
16.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.
17.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)
19.(5分)先化简,再求值:(1﹣)÷,其中x=1.
20.(8分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
分组
频数
4.0≤x<4.2
2
4.2≤x<4.4
3
4.4≤x<4.6
5
4.6≤x<4.8
8
4.8≤x<5.0
17
5.0≤x<5.2
5
(1)求活动所抽取的学生人数;
(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.
21.(10分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?
小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.
下面是小林的探究过程,请补充完整:
(1)画出几何图形,明确条件和探究对象;
如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.
(2)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
y/cm
6.9
5.3
4.0
3.3
4.5
6
(说明:补全表格时相关数据保留一位小数)
(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.
22.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;△A2B2C2的面积是 平方单位.
23.(12分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
(1)求李华选择的美食是羊肉泡馍的概率;
(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
24.(14分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:
(1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
(2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
(3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
【详解】
解:连接CE,∵AE∥BC,E为AD中点,
∴ .
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.
【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
2、B
【解析】
试题分析:如图,如图,过点E作EF∥AB,
∵AB∥CD,∴EF∥AB∥CD,
∴∠1=∠4,∠3=∠5,
∴∠1+∠2+∠3=∠2+∠4+∠5=180°,
故选B
3、C
【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.
【详解】
A. 当时,能判断;
B. 当时,能判断;
C. 当时,不能判断;
D. 当时,,能判断.
故选:C.
【点睛】
本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.
4、C
【解析】
解:观察、分析表格中的数据可得:
∵课外阅读时间为1小时的人数最多为11人,
∴众数为1.
∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,
∴中位数为2.
故选C.
【点睛】
本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.
5、D
【解析】
首先计算平方,然后再确定的范围,进而可得4+的范围.
【详解】
解:a=×(7+1+2)=4+,
∵2<<3,
∴6<4+<7,
∴a的值在6和7之间,
故选D.
【点睛】
此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.
6、A
【解析】
设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.
【详解】
设每支百合花x元,每支玫瑰花y元,根据题意得:
8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,
∴2支百合花比2支玫瑰花多8元.
故选:A.
【点睛】
考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
7、B
【解析】
由科学记数法的定义可得答案.
【详解】
解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,
故选B.
【点睛】
科学记数法表示数的标准形式为 (<10且n为整数).
8、C
【解析】
试题分析:①∵三角形三个内角的比是1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°,
∴3x=3×30°=90°,
∴此三角形是直角三角形,故本小题正确;
②∵三角形的一个外角与它相邻的一个内角的和是180°,
∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
④∵∠A=∠B=∠C,
∴设∠A=∠B=x,则∠C=2x,
∴x+x+2x=180°,解得x=45°,
∴2x=2×45°=90°,
∴此三角形是直角三角形,故本小题正确;
⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
∴三角形一个内角也等于另外两个内角的和,
∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
故选D.
考点:1.三角形内角和定理;2.三角形的外角性质.
9、A
【解析】
∵∠C=90°,BC=2cm,∠A=30°,
∴AB=4,
由勾股定理得:AC=2,
∵四边形DEFG为矩形,∠C=90,
∴DE=GF=2,∠C=∠DEF=90°,
∴AC∥DE,
此题有三种情况:
(1)当0<x<2时,AB交DE于H,如图
∵DE∥AC,
∴,
即,
解得:EH=x,
所以y=•x•x=x2,
∵x 、y之间是二次函数,
所以所选答案C错误,答案D错误,
∵a=>0,开口向上;
(2)当2≤x≤6时,如图,
此时y=×2×2=2,
(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,
BF=x﹣6,与(1)类同,同法可求FN=X﹣6,
∴y=s1﹣s2,
=×2×2﹣×(x﹣6)×(X﹣6),
=﹣x2+6x﹣16,
∵﹣<0,
∴开口向下,
所以答案A正确,答案B错误,
故选A.
点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.
10、C
【解析】
A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
D、前年年收入即为①②③三种农作物的收入,此选项错误,
故选C.
【点睛】
本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
二、填空题(共7小题,每小题3分,满分21分)
11、三.
【解析】
先根据一次函数判断出函数图象经过的象限,进而可得出结论.
【详解】
解:∵一次函数中,
此函数的图象经过一、二、四象限,不经过第三象限,
故答案为:三.
【点睛】
本题考查的是一次函数的性质,即一次函数中,当,时,函数图象经过一、二、四象限.
12、
【解析】
分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
详解:如图所示:
∵∠C=90°,tanA=,
∴设BC=x,则AC=2x,故AB=x,
则sinB=.
故答案为: .
点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
13、
【解析】
两边同时乘,得到整式方程,解整式方程后进行检验即可.
【详解】
解:两边同时乘,得
,
解得,
检验:当时,≠0,
所以x=1是原分式方程的根,
故答案为:x=1.
【点睛】
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
14、
【解析】
试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.
考点:二元一次方程组的应用
15、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
16、1
【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.
【详解】
∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.
∵AB=4,BC=6,∴AD+CD=1.
∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.
故答案为1.
【点睛】
本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
17、1
【解析】
根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.
【详解】
∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4
∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴
∴点C的坐标为(6,2),
∵点O的对应点C恰好落在反比例函数y=的图象上,
∴k=2,
故答案为1.
【点睛】
本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.
三、解答题(共7小题,满分69分)
18、见解析.
【解析】
分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.
【详解】
如图,点P为所作.
【点睛】
本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.
19、.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
【详解】
原式==
当x=1时,原式=.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
20、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
【解析】
【分析】(1)求出频数之和即可;
(2)根据合格率=合格人数÷总人数×100%即可得解;
(3)从两个不同的角度分析即可,答案不唯一.
【详解】(1)∵频数之和=3+6+7+9+10+5=40,
∴所抽取的学生人数为40人;
(2)活动前该校学生的视力达标率=×100%=37.5%;
(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
21、(1)见解析;(1)3.5;(3)见解析; (4)3.1
【解析】
根据题意作图测量即可.
【详解】
(1)取点、画图、测量,得到数据为3.5
故答案为:3.5
(3)由数据得
(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x
所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.
【点睛】
本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.
22、(1)(2,﹣2);
(2)(1,0);
(3)1.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=1平方单位.
故答案为1.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
23、(1);(2)见解析.
【解析】
(1)直接根据概率的意义求解即可;
(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.
【详解】
解:(1)李华选择的美食是羊肉泡馍的概率为;
(2)列表得:
E
F
G
H
A
AE
AF
AG
AH
B
BE
BF
BG
BH
C
CE
CF
CG
CH
D
DE
DF
DG
DH
由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,
所以李华和王涛选择的美食都是凉皮的概率为=.
【点睛】
本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.
24、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
【解析】
解:(1)甲每分钟生产=25只;
提高生产速度之前乙的生产速度==15只/分,
故乙在提高生产速度之前已生产了零件:15×10=150只;
(2)结合后图象可得:
甲:y甲=25x(0≤x≤20);
乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
乙:y乙=15x(0≤x≤10),
当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
10k+b=150,17k+b=500,
解得:k=50,b=−350,
故y乙=50x−350(10≤x≤17).
综上可得:y甲=25x(0≤x≤20);
;
(3)令y甲=y乙,得25x=50x−350,
解得:x=14,
此时y甲=y乙=350只,故甲工人还有150只未生产.
相关试卷
这是一份广西省南宁市2022-2023学年中考数学押题卷含解析,共17页。
这是一份广西南宁市马山县重点中学2022年中考数学押题试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份广西南宁市广西大学附属中学2021-2022学年中考数学押题试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,分式的值为0,则x的取值为,某校40名学生参加科普知识竞赛等内容,欢迎下载使用。