广州市从化区市级名校2022年中考数学最后一模试卷含解析
展开
这是一份广州市从化区市级名校2022年中考数学最后一模试卷含解析,共26页。试卷主要包含了如果a﹣b=5,那么代数式,如下图所示,该几何体的俯视图是,已知方程组,那么x+y的值等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,A(4,0),B(1,3),以OA、OB为边作□OACB,反比例函数(k≠0)的图象经过点C.则下列结论不正确的是( )
A.□OACB的面积为12
B.若y5
C.将□OACB向上平移12个单位长度,点B落在反比例函数的图象上.
D.将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上.
2.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )
A.0个 B.1个 C.2个 D.3个
3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
4.如果a﹣b=5,那么代数式(﹣2)•的值是( )
A.﹣ B. C.﹣5 D.5
5.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
6.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )
A. B. C. D.
7.如图,,交于点,平分,交于. 若,则 的度数为( )
A.35o B.45o C.55o D.65o
8.如图,数轴上表示的是下列哪个不等式组的解集( )
A. B. C. D.
9.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )
A.10 B.14 C.10或14 D.8或10
10.已知方程组,那么x+y的值( )
A.-1 B.1 C.0 D.5
11.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )
A. B. C.6 D.4
12.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______
14.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.
15.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.
16.化简:+3=_____.
17.方程的解为 .
18.因式分解:______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩n(分)
评定等级
频数
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根据以上信息解答下列问题:
(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
20.(6分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点
(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;
(2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值
(3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由
21.(6分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
求证:①PN=PF;②DF+DN=DP;
(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.
22.(8分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b= ,m= ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
23.(8分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.
(1)求证:△ABE≌△BCN;
(2)若N为AB的中点,求tan∠ABE.
24.(10分)(1)(﹣2)2+2sin 45°﹣
(2)解不等式组,并将其解集在如图所示的数轴上表示出来.
25.(10分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)
26.(12分)如图,是等腰三角形,,.
(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);
(2)判断是否为等腰三角形,并说明理由.
27.(12分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
先根据平行四边形的性质得到点的坐标,再代入反比例函数(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.
【详解】
解:A(4,0),B(1,3),,
,
反比例函数(k≠0)的图象经过点,
,
反比例函数解析式为.
□OACB的面积为,正确;
当时,,故错误;
将□OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;
因为反比例函数的图象关于原点中心对称,故将□OACB绕点O旋转180°,点C的对应点落在反比例函数图象的另一分支上,正确.
故选:B.
【点睛】
本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.
2、A
【解析】
解:①由函数图象,得a=120÷3=40,
故①正确,
②由题意,得5.5﹣3﹣120÷(40×2),
=2.5﹣1.5,
=1.
∴甲车维修的时间为1小时;
故②正确,
③如图:
∵甲车维修的时间是1小时,
∴B(4,120).
∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
∴E(5,240).
∴乙行驶的速度为:240÷3=80,
∴乙返回的时间为:240÷80=3,
∴F(8,0).
设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
,,
解得,,
∴y1=80t﹣200,y2=﹣80t+640,
当y1=y2时,
80t﹣200=﹣80t+640,
t=5.2.
∴两车在途中第二次相遇时t的值为5.2小时,
故弄③正确,
④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
∴两车相距的路程为:120﹣80=40千米,
故④正确,
故选A.
3、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
4、D
【解析】
【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
【详解】(﹣2)•
=
=
=a-b,
当a-b=5时,原式=5,
故选D.
5、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
6、B
【解析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
【详解】
解:主视图,如图所示:
.
故选B.
【点睛】
本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
7、D
【解析】
分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.
详解:
又∵EF平分∠BEC,
.
故选D.
点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.
8、B
【解析】
根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.
【详解】
解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
A、不等式组的解集为x>-3,故A错误;
B、不等式组的解集为x≥-3,故B正确;
C、不等式组的解集为x<-3,故C错误;
D、不等式组的解集为-3<x<5,故D错误.
故选B.
【点睛】
本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.
9、B
【解析】
试题分析: ∵2是关于x的方程x2﹣2mx+3m=0的一个根,
∴22﹣4m+3m=0,m=4,
∴x2﹣8x+12=0,
解得x1=2,x2=1.
①当1是腰时,2是底边,此时周长=1+1+2=2;
②当1是底边时,2是腰,2+2<1,不能构成三角形.
所以它的周长是2.
考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.
10、D
【解析】
解:,
①+②得:3(x+y)=15,
则x+y=5,
故选D
11、C
【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
12、C
【解析】
连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE.∴CD=2CE.
∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
∴.
∵在△CMN中,∠C=90°,MC=6,NC=,∴
∴.
∴.故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
【解析】
根据图形的旋转和平移性质即可解题.
【详解】
解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
【点睛】
本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
14、80°.
【解析】
如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.
【详解】
如图,
∵m∥n,
∴∠1=∠3,
∵∠1=100°,
∴∠3=100°,
∴∠2=180°﹣100°=80°,
故答案为80°.
【点睛】
本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.
15、
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴这圈金属丝的周长最小为2AC=4dm.
故答案为:4dm
【点睛】
本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.
16、
【解析】
试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.
17、.
【解析】
试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
,经检验,是原方程的根.
18、
【解析】
先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【详解】
xy1+1xy+x,
=x(y1+1y+1),
=x(y+1)1.
故答案为:x(y+1)1.
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)25;(2)8°48′;(3).
【解析】
试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
试题解析:(1)∵C等级频数为15,占60%,
∴m=15÷60%=25;
(2)∵B等级频数为:25﹣2﹣15﹣6=2,
∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:
∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
∴其中至少有一家是A等级的概率为:=.
考点:频数(率)分布表;扇形统计图;列表法与树状图法.
20、 (1);6;(2)有最小值;(3),.
【解析】
(1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直角三角形求出点D的坐标即可求出BD;
(2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证.
(3)求出线段AC,BC进而判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P.
【详解】
解:(1) 对于直线y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵抛物线y=x2+bx+c过B,C两点,
∴
∴
∴抛物线的解析式为y=;
令y=0,
∴=0,
∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如图2,记半圆的圆心为O',连接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,
∴D(0,2),
∴BD=2-(-3)=5;
(2) 如图3,
∵A(-1,0),C(4,0),
∴AC=5,
过点E作EG∥BC交x轴于G,
∵△ABF的AF边上的高和△BEF的EF边的高相等,设高为h,
∴S△ABF=AF•h,S△BEF=EF•h,
∴==
∵的最小值,
∴最小,
∵CF∥GE,
∴
∴最小,即:CG最大,
∴EG和果圆的抛物线部分只有一个交点时,CG最大,
∵直线BC的解析式为y=x-3,
设直线EG的解析式为y=x+m①,
∵抛物线的解析式为y=x2-x-3②,
联立①②化简得,3x2-12x-12-4m=0,
∴△=144+4×3×(12+4m)=0,
∴m=-6,
∴直线EG的解析式为y=x-6,
令y=0,
∴x-6=0,
∴x=8,
∴CG=4,
∴=;
(3),.理由:
如图1,∵AC是半圆的直径,
∴半圆上除点A,C外任意一点Q,都有∠AQC=90°,
∴点P只能在抛物线部分上,
∵B(0,-3),C(4,0),
∴BC=5,
∵AC=5,
∴AC=BC,
∴∠BAC=∠ABC,
当∠APC=∠CAB时,点P和点B重合,即:P(0,-3),
由抛物线的对称性知,另一个点P的坐标为(3,-3),
即:使∠APC=∠CAB,点P坐标为(0,-3)或(3,-3).
【点睛】
本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键.
21、(1)①证明见解析;②证明见解析;(2),证明见解析.
【解析】
(1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
(2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
【详解】
解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM⊥PD,∠DMP=45°,
∴DP=MP.
∵PM⊥PD,PF⊥PN,
∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
在△PMN和△PDF中, ,
∴△PMN≌△PDF(ASA),
∴PN=PF,MN=DF;
②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
(2).理由如下:
过点P作PM1⊥PD,PM1交AD边于点M1,如图,
∵四边形ABCD是矩形,∴∠ADC=90°.
又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
在△PM1N和△PDF中,
∴△PM1N≌△PDF(ASA),∴M1N=DF,
由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
∴DN﹣DF=DP.
【点睛】
本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.
22、50;28;8
【解析】
【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
【详解】解:(1)50,28,8;
(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
即扇形统计图中扇形C的圆心角度数为144°;
(3)1000×=560(人).
即每月零花钱的数额x元在60≤x
相关试卷
这是一份2023年广东省广州市从化区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广东省广州市从化区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年山东省济南实验市级名校中考数学最后一模试卷含解析,共21页。试卷主要包含了若点A,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。