广西壮族自治区钦州市浦北县2021-2022学年中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )
A. B. C. D.
2.-2的绝对值是()
A.2 B.-2 C.±2 D.
3.用配方法解下列方程时,配方有错误的是( )
A.化为 B.化为
C.化为 D.化为
4.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
5.二次函数(a≠0)的图象如图所示,则下列命题中正确的是( )
A.a >b>c
B.一次函数y=ax +c的图象不经第四象限
C.m(am+b)+b<a(m是任意实数)
D.3b+2c>0
6.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )
A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
7.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有( )个.
A.3 B.4 C.2 D.1
8.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
9.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )
A. B. C. D.
10.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1 B.2 C.3 D.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在△ABC中,∠C=90°,sinA=,BC=4,则AB值是_____.
12.在△ABC中,∠C=90°,若tanA=,则sinB=______.
13.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于____;
(2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______
14.一个凸边形的内角和为720°,则这个多边形的边数是__________________
15.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.
16.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.
(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?
18.(8分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力
频数(人)
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0.3
5.2≤x<5.5
10
b
(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
19.(8分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
20.(8分)(1)计算:.
(2)解方程:x2﹣4x+2=0
21.(8分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
22.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
23.(12分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
(1)求证:四边形ABEF是平行四边形;
(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.
24.某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
()请补全上面的条形图.
()所抽查学生“诵读经典”时间的中位数落在__________级.
()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:∵四边形ABCD是平行四边形,
故选C.
2、A
【解析】
根据绝对值的性质进行解答即可
【详解】
解:﹣1的绝对值是:1.
故选:A.
【点睛】
此题考查绝对值,难度不大
3、B
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
解:、,,,,故选项正确.
、,,,,故选项错误.
、,,,,,故选项正确.
、,,,,.故选项正确.
故选:.
【点睛】
此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
4、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
5、D
【解析】
解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
故选D.
点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
6、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10700=1.07×104,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、A
【解析】
利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.
【详解】
∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),
∴A(-3,0),
∴AB=1-(-3)=4,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以②正确;
∵抛物线开口向下,
∴a>0,
∵抛物线的对称轴为直线x=-=-1,
∴b=2a>0,
∴ab>0,所以③错误;
∵x=-1时,y<0,
∴a-b+c<0,
而a>0,
∴a(a-b+c)<0,所以④正确.
故选A.
【点睛】
本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.
8、B
【解析】
试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
考点:一元二次方程与函数
9、B
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】210万=2100000,
2100000=2.1×106,
故选B.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.
【详解】
根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,
则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.
故选B.
【点睛】
本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、6
【解析】
根据正弦函数的定义得出sinA=,即,即可得出AB的值.
【详解】
∵sinA=,即,
∴AB=1,
故答案为1.
【点睛】
本题考查了解直角三角形,熟练掌握正弦函数的定义是解题的关键.
12、
【解析】
分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
详解:如图所示:
∵∠C=90°,tanA=,
∴设BC=x,则AC=2x,故AB=x,
则sinB=.
故答案为: .
点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
13、; 答案见解析.
【解析】
(1)AB==.
故答案为.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
14、1
【解析】
设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
【详解】
解:设这个多边形的边数是n
根据多边形内角和公式可得
解得.
故答案为:1.
【点睛】
此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
15、1或
【解析】
由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
【详解】
解:∵四边形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四边形ABFE是平行四边形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
当△EFG为等腰三角形时,
当EF=EG时,EG=,
如图1,
过点D作DH⊥EG于H,
∴EH=EG=,
在Rt△DEH中,DE==1,
GE=GF时,如图2,
过点G作GQ⊥EF,
∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
∴EG=1,
过点D作DP⊥EG于P,
∴PE=EG=,
同①的方法得,DE=,
当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
故答案为1或.
【点睛】
本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
16、k>3
【解析】
分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.
详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,
∴
解得,k>3.
故答案是:k>3.
点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.
三、解答题(共8题,共72分)
17、(1)y=0.8x﹣60(0≤x≤200)(2)159份
【解析】
解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).
(2)根据题意得:30(0.8x﹣60)≥2000,解得x≥.
∴小丁每天至少要买159份报纸才能保证每月收入不低于2000元.
(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x为整数.
(2)因为每月以30天计,根据题意可得30(0.8x﹣60)≥2000,解之求解即可.
18、200名初中毕业生的视力情况 200 60 0.05
【解析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;
(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;
(3)求出样本中视力正常所占百分比乘以5000即可得解.
【详解】
(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,
故答案为200;
(2)a=200×0.3=60,b=10÷200=0.05,
补全频数分布图,如图所示,
故答案为60,0.05;
(3)根据题意得:5000×=3500(人),
则全区初中毕业生中视力正常的学生有估计有3500人.
19、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
【解析】
试题分析:把点代入抛物线,求出的值即可.
先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
联立方程求出点的坐标, 最大值=,
进而计算四边形EAPD面积的最大值;
分两种情况进行讨论即可.
试题解析:(1)∵在抛物线上,
∴
解得
∴抛物线的解析式为
(2)过点P作轴交AD于点G,
∵
∴直线BE的解析式为
∵AD∥BE,设直线AD的解析式为 代入,可得
∴直线AD的解析式为
设则
则
∴当x=1时,PG的值最大,最大值为2,
由 解得 或
∴
∴ 最大值=
∵AD∥BE,
∴
∴S四边形APDE最大=S△ADP最大+
(3)①如图3﹣1中,当时,作于T.
∵
∴
∴
∴
可得
②如图3﹣2中,当时,
当时,
当时,Q3
综上所述,满足条件点点Q坐标为或或或
20、(1)-1;(2)x1=2+,x2=2﹣
【解析】
(1)按照实数的运算法则依次计算即可;
(2)利用配方法解方程.
【详解】
(1)原式=﹣2﹣1+2×=﹣1;
(2)x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
∴x﹣2=±,
∴x1=2+,x2=2﹣.
【点睛】
此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
21、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
【解析】
分析:(1)根据点(4,1)在()的图象上,即可求出的值;
(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
详解:(1)解:∵点(4,1)在()的图象上.
∴,
∴.
(2)① 3个.(1,0),(2,0),(3,0).
② .当直线过(4,0)时:,解得
.当直线过(5,0)时:,解得
.当直线过(1,2)时:,解得
.当直线过(1,3)时:,解得
∴综上所述:或.
点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
22、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
23、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
【解析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
【详解】
(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
∵CA=CE,CB=CF,∴AE=BF.
∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
【点睛】
本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.
24、)补全的条形图见解析()Ⅱ级.().
【解析】
试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;
(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.
试题解析: (1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.
补图如下:
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.
(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.
2024年广西壮族自治区钦州市浦北县中考一模数学模拟试题(原卷版+解析版): 这是一份2024年广西壮族自治区钦州市浦北县中考一模数学模拟试题(原卷版+解析版),文件包含精品解析2024年广西壮族自治区钦州市浦北县中考一模数学模拟试题原卷版docx、精品解析2024年广西壮族自治区钦州市浦北县中考一模数学模拟试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析: 这是一份广西壮族自治区桂平市市级名校2021-2022学年中考数学押题卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是,的相反数是等内容,欢迎下载使用。
广西壮族自治区崇左市2021-2022学年中考数学押题试卷含解析: 这是一份广西壮族自治区崇左市2021-2022学年中考数学押题试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,真命题是,cs30°=等内容,欢迎下载使用。