终身会员
搜索
    上传资料 赚现金
    广州市白云区重点名校2022年中考四模数学试题含解析
    立即下载
    加入资料篮
    广州市白云区重点名校2022年中考四模数学试题含解析01
    广州市白云区重点名校2022年中考四模数学试题含解析02
    广州市白云区重点名校2022年中考四模数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广州市白云区重点名校2022年中考四模数学试题含解析

    展开
    这是一份广州市白云区重点名校2022年中考四模数学试题含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )

    A. B. C. D.
    2.下列各式计算正确的是( )
    A. B. C. D.
    3.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    4.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )

    A.5 cm B.6 cm C.8 cm D.10 cm
    5.如图,在中,点D为AC边上一点,则CD的长为( )

    A.1 B. C.2 D.
    6.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为(  )

    A.32° B.42° C.46° D.48°
    7.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是( )
    A.> B.= C.< D.不能确定
    8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )

    A.点A B.点B C.点C D.点D
    9.方程组的解x、y满足不等式2x﹣y>1,则a的取值范围为(  )
    A.a≥ B.a> C.a≤ D.a>
    10.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.
    部门
    人数
    每人所创年利润(单位:万元)

    1
    19

    3
    8

    7


    4
    3
    这11名员工每人所创年利润的众数、平均数分别是  
    A.10,1 B.7,8 C.1,6.1 D.1,6
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.

    12.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′= _______.

    13.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.

    14.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.

    15.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为_____.

    16.分解因式:a2-2ab+b2-1=______.
    17.抛物线 的顶点坐标是________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
    (1)求抛物线的表达式;
    (2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

    19.(5分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.
    20.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

    (1)求证:DE⊥AG;
    (1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
    ①在旋转过程中,当∠OAG′是直角时,求α的度数;
    ②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
    21.(10分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.
    22.(10分)(1)问题发现:
    如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为   ;
    (2)深入探究:
    如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
    (3)拓展延伸:
    如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.

    23.(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
    品名
    猕猴桃
    芒果
    批发价元千克
    20
    40
    零售价元千克
    26
    50
    他购进的猕猴桃和芒果各多少千克?
    如果猕猴桃和芒果全部卖完,他能赚多少钱?
    24.(14分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.
    (1)求抛物线的解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S
    关于m的函数关系式,并求出S的最大值;
    (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    解:分析题中所给函数图像,
    段,随的增大而增大,长度与点的运动时间成正比.
    段,逐渐减小,到达最小值时又逐渐增大,排除、选项,
    段,逐渐减小直至为,排除选项.
    故选.

    【点睛】
    本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
    2、C
    【解析】
    解:A.2a与2不是同类项,不能合并,故本选项错误;
    B.应为,故本选项错误;
    C.,正确;
    D.应为,故本选项错误.
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;同底数幂的乘法.
    3、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    4、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
    【详解】
    如图,连接AD.
    ∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).
    ∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).
    故选C.

    【点睛】
    本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    5、C
    【解析】
    根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
    【详解】
    ∵∠DBC=∠A,∠C=∠C,
    ∴△BCD∽△ACB,


    ∴CD=2.
    故选:C.
    【点睛】
    主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    6、D
    【解析】
    根据平行线的性质与对顶角的性质求解即可.
    【详解】
    ∵a∥b,
    ∴∠BCA=∠2,
    ∵∠BAC=100°,∠2=32°
    ∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
    ∴∠1=∠CBA=48°.
    故答案选D.
    【点睛】
    本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
    7、C
    【解析】
    试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
    考点:反比例函数的性质.
    8、B
    【解析】
    ,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
    【详解】




    因为0.268<0.732<1.268,
    所以 表示的点与点B最接近,
    故选B.
    9、B
    【解析】
    方程组两方程相加表示出2x﹣y,代入已知不等式即可求出a的范围.
    【详解】

    ①+②得:
    解得:
    故选:B.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知
    数的值.
    10、D
    【解析】
    根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.
    【详解】
    解:这11个数据的中位数是第8个数据,且中位数为1,

    则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,
    所以这组数据的众数为1万元,平均数为万元.
    故选:.
    【点睛】
    此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4.8或
    【解析】
    根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
    【详解】
    ①CP和CB是对应边时,△CPQ∽△CBA,
    所以=,
    即=,
    解得t=4.8;
    ②CP和CA是对应边时,△CPQ∽△CAB,
    所以=,
    即=,
    解得t=.
    综上所述,当t=4.8或时,△CPQ与△CBA相似.
    【点睛】
    此题主要考查相似三角形的性质,解题的关键是分情况讨论.
    12、1.5
    【解析】
    在Rt△ABC中,,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得.
    13、
    【解析】
    过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
    【详解】

    过点E作EF⊥BC交BC于点F.
    ∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
    又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
    ∴BF=6
    ∴在Rt△BEF中BE==,
    又∵△BGD∽△BEF
    ∴,即BG=.
    GE=BE-BG=
    故答案为.
    【点睛】
    本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
    14、110°或50°.
    【解析】
    由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.
    【详解】
    ∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:
    ①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;
    ②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;
    综上:∠BDF的度数为110°或50°.
    故答案为110°或50°.
    【点睛】
    本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.
    15、.
    【解析】
    由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.
    【详解】
    ∵点B的坐标为(2,3),点C为OB的中点,
    ∴C点坐标为(1,1.5),
    ∴k=1×1.5=1.5,即反比例函数解析式为y=,
    ∴S△OAD=×1.5=.
    故答案为:.
    【点睛】
    本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于 .
    16、 (a-b+1)(a-b-1)
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.
    【详解】
    a2-2ab+b2-1,
    =(a-b)2-1,
    =(a-b+1)(a-b-1).
    【点睛】
    本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.
    17、(0,-1)
    【解析】
    ∵a=2,b=0,c=-1,∴-=0, ,
    ∴抛物线的顶点坐标是(0,-1),
    故答案为(0,-1).

    三、解答题(共7小题,满分69分)
    18、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
    【解析】
    (1)利用待定系数法求抛物线的表达式;
    (2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
    【详解】
    (1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
    ∴设抛物线的解析式为y=a(x+1)(x﹣4),
    ∵抛物线与y轴交于点C(0,2),
    ∴a×1×(﹣4)=2,
    ∴a=﹣,
    ∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
    (2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
    ∴抛物线的对称轴为直线x=,
    ∴M(,0),∵点D与点C关于点M对称,且C(0,2),
    ∴D(3,﹣2),
    ∵MA=MB,MC=MD,
    ∴四边形ACBD是平行四边形,
    ∵A(﹣1,0),B(4,0),C(3,﹣22),
    ∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
    ∴AD2+BD2=AB2,
    ∴△ABD是直角三角形,
    ∴∠ADB=90°,
    设点P(,m),
    ∴MP=|m|,
    ∵M(,0),B(4,0),
    ∴BM=,
    ∵△BMP与△ABD相似,
    ∴①当△BMP∽ADB时,
    ∴,
    ∴,
    ∴m=±,
    ∴P(,)或(,﹣),
    ②当△BMP∽△BDA时,

    ∴,
    ∴m=±5,
    ∴P(,5)或(,﹣5),
    即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    19、 (1)m≥﹣;(2)m的值为2.
    【解析】
    (1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;
    (2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.
    【详解】
    (1)由题意知,(2m+2)2﹣4×1×m2≥1,
    解得:m≥﹣;
    (2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,
    ∵α+β+αβ=1,
    ∴﹣(2m+2)+m2=1,
    解得:m1=﹣1,m1=2,
    由(1)知m≥﹣,
    所以m1=﹣1应舍去,
    m的值为2.
    【点睛】
    本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.
    20、(1)见解析;(1)30°或150°,的长最大值为,此时.
    【解析】
    (1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
    (1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;
    ②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°.
    【详解】
    (1)如图1,延长ED交AG于点H,

    ∵点O是正方形ABCD两对角线的交点,
    ∴OA=OD,OA⊥OD,
    ∵OG=OE,
    在△AOG和△DOE中,

    ∴△AOG≌△DOE,
    ∴∠AGO=∠DEO,
    ∵∠AGO+∠GAO=90°,
    ∴∠GAO+∠DEO=90°,
    ∴∠AHE=90°,
    即DE⊥AG;
    (1)①在旋转过程中,∠OAG′成为直角有两种情况:
    (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
    ∵OA=OD=OG=OG′,
    ∴在Rt△OAG′中,sin∠AG′O==,
    ∴∠AG′O=30°,
    ∵OA⊥OD,OA⊥AG′,
    ∴OD∥AG′,
    ∴∠DOG′=∠AG′O=30°∘,
    即α=30°;

    (Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
    同理可求∠BOG′=30°,
    ∴α=180°−30°=150°.
    综上所述,当∠OAG′=90°时,α=30°或150°.
    ②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,

    ∵正方形ABCD的边长为1,
    ∴OA=OD=OC=OB=,
    ∵OG=1OD,
    ∴OG′=OG=,
    ∴OF′=1,
    ∴AF′=AO+OF′=+1,
    ∵∠COE′=45°,
    ∴此时α=315°.
    【点睛】
    本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
    21、x取0时,为1 或x取1时,为2
    【解析】
    试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.
    试题解析:解:原式=[]
    =
    =
    = x+1,
    ∵x1-4≠0,x-2≠0,
    ∴x≠1且x≠-1且x≠2,
    当x=0时,原式=1.
    或当x=1时,原式=2.
    22、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
    【解析】
    (1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
    (2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
    (3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
    【详解】
    (1)NC∥AB,理由如下:
    ∵△ABC与△MN是等边三角形,
    ∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
    ∴∠BAM=∠CAN,
    在△ABM与△ACN中,

    ∴△ABM≌△ACN(SAS),
    ∴∠B=∠ACN=60°,
    ∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
    ∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
    ∴CN∥AB;
    (2)∠ABC=∠ACN,理由如下:
    ∵=1且∠ABC=∠AMN,
    ∴△ABC~△AMN
    ∴,
    ∵AB=BC,
    ∴∠BAC=(180°﹣∠ABC),
    ∵AM=MN
    ∴∠MAN=(180°﹣∠AMN),
    ∵∠ABC=∠AMN,
    ∴∠BAC=∠MAN,
    ∴∠BAM=∠CAN,
    ∴△ABM~△ACN,
    ∴∠ABC=∠ACN;
    (3)如图3,连接AB,AN,
    ∵四边形ADBC,AMEF为正方形,
    ∴∠ABC=∠BAC=45°,∠MAN=45°,
    ∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
    即∠BAM=∠CAN,
    ∵,
    ∴,
    ∴△ABM~△ACN
    ∴,
    ∴=cos45°=,
    ∴,
    ∴BM=2,
    ∴CM=BC﹣BM=8,
    在Rt△AMC,
    AM=,
    ∴EF=AM=2.

    【点睛】
    本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
    23、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
    【解析】
    设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    根据利润销售收入成本,即可求出结论.
    【详解】
    设购进猕猴桃x千克,购进芒果y千克,
    根据题意得:,
    解得:.
    答:购进猕猴桃20千克,购进芒果30千克.
    元.
    答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
    【点睛】
    本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
    24、(1)
    时,S最大为
    (1)(-1,1)或或或(1,-1)
    【解析】
    试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.
    (2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;
    (1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论.
    试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),
    将A(-1,0),B(0,-1),C(1,0)三点代入函数解析式得:
    解得,所以此函数解析式为:.
    (2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,),
    ∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,
    当m=-时,S有最大值为:S=-.
    (1)设P(x,).分两种情况讨论:
    ①当OB为边时,根据平行四边形的性质知PB∥OQ,
    ∴Q的横坐标的绝对值等于P的横坐标的绝对值,
    又∵直线的解析式为y=-x,则Q(x,-x).
    由PQ=OB,得:|-x-()|=1
    解得: x=0(不合题意,舍去),-1, ,∴Q的坐标为(-1,1)或或;
    ②当BO为对角线时,如图,知A与P应该重合,OP=1.四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=﹣x得出Q为(1,﹣1).
    综上所述:Q的坐标为:(-1,1)或或或(1,-1).

    点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.

    相关试卷

    2024年广东省广州市白云区 中考一模考试数学试题: 这是一份2024年广东省广州市白云区 中考一模考试数学试题,共6页。

    2023年广东省广州市白云区中考数学一模试卷(含解析): 这是一份2023年广东省广州市白云区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    广东省广州市名校联盟重点名校2021-2022学年中考联考数学试题含解析: 这是一份广东省广州市名校联盟重点名校2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map