终身会员
搜索
    上传资料 赚现金

    广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析

    立即下载
    加入资料篮
    广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析第1页
    广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析第2页
    广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析

    展开

    这是一份广州市从化区从化七中度重点名校2022年中考数学押题试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列哪一个是假命题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为(  )

    A.16 B.14 C.12 D.10
    2.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )

    A.2:3 B.4:9 C.2:5 D.4:25
    3.3的相反数是( )
    A.﹣3 B.3 C. D.﹣
    4.下列哪一个是假命题(  )
    A.五边形外角和为360°
    B.切线垂直于经过切点的半径
    C.(3,﹣2)关于y轴的对称点为(﹣3,2)
    D.抛物线y=x2﹣4x+2017对称轴为直线x=2
    5.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    6.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )

    A. B.
    C. D.
    7.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )

    A.①② B.②③ C.②④ D.①③④
    8.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
    人数
    3
    4
    2
    1
    分数
    80
    85
    90
    95
    A.85和82.5 B.85.5和85 C.85和85 D.85.5和80
    9.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )

    A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
    10.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为______cm .

    12.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.

    13.若,则= .
    14.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.

    15.如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE交AC于点F,则△AEF的面积为_______.

    16.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.
    三、解答题(共8题,共72分)
    17.(8分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
    (1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
    (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
    ①求证:BE′+BF=2,
    ②求出四边形OE′BF的面积.

    18.(8分)小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:
    (1)函数y=自变量的取值范围是   ;
    (2)下表列出了y与x的几组对应值:
    x

    ﹣2

    m




    1

    2

    y



    1

    4
    4

    1



    表中m的值是   ;
    (3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;
    (4)结合函数y=的图象,写出这个函数的性质:   .(只需写一个)

    19.(8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.
    (1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是   ;
    (2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
    20.(8分)已知,关于x的方程x2﹣mx+m2﹣1=0,
    (1)不解方程,判断此方程根的情况;
    (2)若x=2是该方程的一个根,求m的值.
    21.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    22.(10分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
    (1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
    (2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
    (3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
    (4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.

    23.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

    24.先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据切线长定理进行求解即可.
    【详解】
    ∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
    ∴AF=AD=2,BD=BE,CE=CF,
    ∵BE+CE=BC=5,
    ∴BD+CF=BC=5,
    ∴△ABC的周长=2+2+5+5=14,
    故选B.
    【点睛】
    本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
    2、D
    【解析】
    试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
    试题解析:∵四边形ABCD是平行四边形,
    ∴AB∥CD,BA=DC
    ∴∠EAB=∠DEF,∠AFB=∠DFE,
    ∴△DEF∽△BAF,
    ∴DE:AB=DE:DC=2:5,
    ∴S△DEF:S△ABF=4:25,
    考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
    3、A
    【解析】
    试题分析:根据相反数的概念知:1的相反数是﹣1.
    故选A.
    【考点】相反数.
    4、C
    【解析】
    分析:
    根据每个选项所涉及的数学知识进行分析判断即可.
    详解:
    A选项中,“五边形的外角和为360°”是真命题,故不能选A;
    B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
    C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
    D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
    故选C.
    点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
    5、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    6、D
    【解析】
    找到从左面看到的图形即可.
    【详解】
    从左面上看是D项的图形.故选D.
    【点睛】
    本题考查三视图的知识,左视图是从物体左面看到的视图.
    7、C
    【解析】
    试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
    点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
    8、B
    【解析】
    根据众数及平均数的定义,即可得出答案.
    【详解】
    解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
    故选:B.
    【点睛】
    本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.
    9、B
    【解析】
    先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.
    【详解】
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
    B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
    C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
    D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,
    故选B.
    【点睛】
    本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.
    10、A
    【解析】
    根据锐角三角函数的定义求出即可.
    【详解】
    解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=.
    故选A.
    【点睛】
    本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、20π
    【解析】
    解:=20πcm.故答案为20πcm.
    12、1
    【解析】
    根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
    【详解】
    ∵DE垂直平分AC,∠A=30°,
    ∴AE=CE,∠ACE=∠A=30°,
    ∵∠ACB=80°,
    ∴∠BCE=80°-30°=1°.
    故答案为:1.
    13、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.
    14、4
    【解析】
    由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.
    【详解】
    解:如图,设AC与BD的交点为O,连接PO,

    ∵四边形ABCD是矩形
    ∴AO=CO=5=BO=DO,
    ∴S△DCO=S矩形ABCD=10,
    ∵S△DCO=S△DPO+S△PCO,
    ∴10=×DO×PF+×OC×PE
    ∴20=5PF+5PE
    ∴PE+PF=4
    故答案为4
    【点睛】
    本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.
    15、
    【解析】
    首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到△AEF的面积.
    【详解】
    解:∵在等边△ABC中,∠B=60º,AB=4,D是BC的中点,
    ∴AD⊥BC,∠BAD=∠CAD=30º,
    ∴AD=ABcos30º=4×=2,
    根据旋转的性质知,∠EAC=∠DAB=30º,AD=AE,
    ∴∠DAE=∠EAC+∠CAD=60º,
    ∴△ADE的等边三角形,
    ∴DE=AD=2,∠AEF=60º,
    ∵∠EAC=∠CAD
    ∴EF=DF=,AF⊥DE
    ∴AF=EFtan60º=×=3,
    ∴S△AEF=EF×AF=××3=.
    故答案为:.
    【点睛】
    本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出△ADE是等边三角形是解题的关键.
    16、
    【解析】
    设每只雀、燕的重量各为x两,y两,由题意得:

    故答案是:或 .

    三、解答题(共8题,共72分)
    17、 (1);(2)①2,②
    【解析】
    分析:(1)重合部分是等边三角形,计算出边长即可.
    ①证明:在图3中,取AB中点E,证明≌,即可得到
    ,
    ②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.
    详解:(1)∵四边形为菱形,

    ∴为等边三角形

    ∵AD//

    ∴为等边三角形,边长
    ∴重合部分的面积:
    ①证明:在图3中,取AB中点E,

    由上题知,

    又∵
    ∴≌,

    ∴,
    ②由①知,在旋转过程60°中始终有≌
    ∴四边形的面积等于=.
    点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.
    18、(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y轴对称.
    【解析】
    (1)由分母不等于零可得答案;
    (2)求出y=1时x的值即可得;
    (3)根据表格中的数据,描点、连线即可得;
    (4)由函数图象即可得.
    【详解】
    (1)函数y=的定义域是x≠0,
    故答案为x≠0;
    (2)当y=1时,=1,
    解得:x=1或x=﹣1,
    ∴m=﹣1,
    故答案为﹣1;
    (3)如图所示:

    (4)图象关于y轴对称,
    故答案为图象关于y轴对称.
    【点睛】
    本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.
    19、(1);(2)
    【解析】
    (1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;
    (2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
    【详解】
    解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,
    ∴甲投放了一袋是餐厨垃圾的概率是,
    故答案为:;
    (2)记这四类垃圾分别为A、B、C、D,
    画树状图如下:

    由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,
    所以投放的两袋垃圾同类的概率为=.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    20、(1)证明见解析;(2)m=2或m=1.
    【解析】
    (1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
    (2)将x=2代入方程得到关于m的方程,解之可得.
    【详解】
    (1)∵△=(﹣m)2﹣4×1×(m2﹣1)
    =m2﹣m2+4
    =4>0,
    ∴方程有两个不相等的实数根;
    (2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
    整理,得:m2﹣8m+12=0,
    解得:m=2或m=1.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
    21、(1)a=0.3,b=4;(2)99人;(3)
    【解析】
    分析:(1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    详解:(1)a=1-0.15-0.35-0.20=0.3;
    ∵总人数为:3÷0.15=20(人),
    ∴b=20×0.20=4(人);
    故答案为:0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,
    ∴所选两人正好都是甲班学生的概率是:.
    点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    22、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
    【解析】
    (1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
    (2)分点Q在BD上方和下方的情况讨论求解即可.
    (3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
    (4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
    【详解】
    解:(1)如图,过点P做PE⊥AD于点E

    由已知,AP=PQ,∠APQ=90°
    ∴△APQ为等腰直角三角形
    ∴∠PAQ=∠PAB=45°
    设PE=x,则AE=x,DE=4﹣x
    ∵PE∥AB
    ∴△DEP∽△DAB
    ∴=
    ∴=
    解得x=
    ∴PA=PE=
    ∴弧AQ的长为•2π•=π.
    故答案为45,,π.
    (2)如图,过点Q做QF⊥BD于点F

    由∠APQ=90°,
    ∴∠APP0+∠QPD=90°
    ∵∠P0AP+∠APP0=90°
    ∴∠QPD=∠P0AP
    ∵AP=PQ
    ∴△APP0≌△PQF
    ∴AP0=PF,P0P=QF
    ∵AP0=P0Q0
    ∴Q0D=P0P
    ∴QF=FQ0
    ∴∠QQ0D=45°.
    当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
    此时∠QQ0D=135°,

    综上所述,满足条件的∠QQ0D为45°或135°.
    (3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
    过点Q做QF⊥BD于点F,则QF=BP

    由(2)可知,PP0=BP
    ∴BP0=BP
    ∵AB=3,AD=4
    ∴BD=5
    ∵△ABP0∽△DBA
    ∴AB2=BP0•BD
    ∴9=BP×5
    ∴BP=
    同理,当点Q位于BD下方时,可求得BP=
    故BP的长为或
    (4)由(2)可知∠QQ0D=45°

    则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
    当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
    当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
    ∴EF===5
    过点C做CH⊥EF于点H
    由面积法可知
    CH===
    ∴CQ的取值范围为:≤CQ≤7
    【点睛】
    本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
    23、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).

    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,

    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
    24、原式=,把x=2代入的原式=1.
    【解析】
    试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.
    试题解析:原式= =
    当x=2时,原式=1

    相关试卷

    2023年广东省广州市从化区中考数学二模试卷(含解析):

    这是一份2023年广东省广州市从化区中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广东省广州市从化区中考数学一模试卷(含解析):

    这是一份2023年广东省广州市从化区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年广东省广州市从化区中考猜题数学试卷含解析:

    这是一份2022年广东省广州市从化区中考猜题数学试卷含解析,共21页。试卷主要包含了下列几何体是棱锥的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map