|试卷下载
搜索
    上传资料 赚现金
    广西贺州市昭平县2022年中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    广西贺州市昭平县2022年中考数学最后一模试卷含解析01
    广西贺州市昭平县2022年中考数学最后一模试卷含解析02
    广西贺州市昭平县2022年中考数学最后一模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西贺州市昭平县2022年中考数学最后一模试卷含解析

    展开
    这是一份广西贺州市昭平县2022年中考数学最后一模试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,关于的方程有实数根,则满足,的化简结果为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为(  )
    A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
    2.如图,四边形ABCE内接于⊙O,∠DCE=50°,则∠BOE=(  )

    A.100° B.50° C.70° D.130°
    3.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )

    A. B. C. D.π
    4.关于的方程有实数根,则满足( )
    A. B.且 C.且 D.
    5.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为(  )
    A.1 B.2 C.﹣1 D.﹣2
    6.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
    A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
    7.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).

    A. B. C. D.
    8.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )

    A.10 B.12 C.20 D.24
    9.的化简结果为  
    A.3 B. C. D.9
    10.如果解关于x的分式方程时出现增根,那么m的值为
    A.-2 B.2 C.4 D.-4
    11.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )

    A. B.
    C. D.
    12.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是( )
    A.(1,2) B.(–1,2)
    C.(–1,–2) D.(1,–2)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.

    14.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E= .

    15.若式子有意义,则x的取值范围是   .
    16.如果a+b=2,那么代数式(a﹣)÷的值是______.
    17.计算×3结果等于_____.
    18.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平行四边形ABCD中,AD>AB.

    (1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
    (2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
    20.(6分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.

    21.(6分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
    (1)把△ABC绕点A旋转到图1,BD,CE的关系是   (选填“相等”或“不相等”);简要说明理由;
    (2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=   ,简要说明计算过程;
    (3)在(2)的条件下写出旋转过程中线段PD的最小值为   ,最大值为   .

    22.(8分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.
    求证:;
    若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.

    23.(8分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(≈1.732,结果精确到0.1m).

    24.(10分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?
    25.(10分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
    (1)求证:∠BDA=∠ECA.
    (2)若m=,n=3,∠ABC=75°,求BD的长.
    (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
    (4)试探究线段BF,AE,EF三者之间的数量关系。

    26.(12分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
    求点B的坐标;若△ABC的面积为4,求的解析式.
    27.(12分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

    设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000071的小数点向或移动7位得到7.1,
    所以0.00000071用科学记数法表示为7.1×10﹣7,
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、A
    【解析】
    根据圆内接四边形的任意一个外角等于它的内对角求出∠A,根据圆周角定理计算即可.
    【详解】
    四边形ABCE内接于⊙O,

    由圆周角定理可得,,
    故选:A.
    【点睛】
    本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).
    3、A
    【解析】
    试题解析:如图,
    ∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
    ∴BC=ACtan60°=1×=,AB=2
    ∴S△ABC=AC•BC=.
    根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
    ∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
    =
    =.
    故选A.
    考点:1.扇形面积的计算;2.旋转的性质.
    4、A
    【解析】
    分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
    【详解】
    当a=5时,原方程变形为-4x-1=0,解得x=-;
    当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
    所以a的取值范围为a≥1.
    故选A.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
    5、B
    【解析】
    根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.
    【详解】
    把x=2代入得,4-6+k=0,
    解得k=2.
    故答案为:B.
    【点睛】
    本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
    6、D
    【解析】
    先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
    【详解】
    解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
    故选:D.
    【点睛】
    本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    7、D
    【解析】
    设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
    解:∵,..又∵过点,交于点,∴,
    ∴,∴.故选D.

    8、B
    【解析】
    根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.
    【详解】
    解:根据图象可知点P在BC上运动时,此时BP不断增大,
    由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,
    由于M是曲线部分的最低点,
    ∴此时BP最小,即BP⊥AC,BP=4,
    ∴由勾股定理可知:PC=3,
    由于图象的曲线部分是轴对称图形,
    ∴PA=3,
    ∴AC=6,
    ∴△ABC的面积为:×4×6=12.
    故选:B.
    【点睛】
    本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.
    9、A
    【解析】
    试题分析:根据二次根式的计算化简可得:.故选A.
    考点:二次根式的化简
    10、D
    【解析】
    ,去分母,方程两边同时乘以(x﹣1),得:
    m+1x=x﹣1,由分母可知,分式方程的增根可能是1.
    当x=1时,m+4=1﹣1,m=﹣4,
    故选D.
    11、C
    【解析】
    根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
    【详解】
    解:∵DE∥BC,
    ∴=,BD≠BC,
    ∴≠,选项A不正确;
    ∵DE∥BC,EF∥AB,
    ∴=,EF=BD,=,
    ∵≠,
    ∴≠,选项B不正确;
    ∵EF∥AB,
    ∴=,选项C正确;
    ∵DE∥BC,EF∥AB,
    ∴=,=,CE≠AE,
    ∴≠,选项D不正确;
    故选C.
    【点睛】
    本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
    12、A
    【解析】
    根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.
    【详解】
    ∵将点N(–1,–2)绕点O旋转180°,
    ∴得到的对应点与点N关于原点中心对称,
    ∵点N(–1,–2),
    ∴得到的对应点的坐标是(1,2).
    故选A.
    【点睛】
    本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1:1
    【解析】
    分析:根据相似三角形的周长比等于相似比解答.
    详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.
    点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
    14、50°.
    【解析】
    解:连接DF,连接AF交CE于G,

    ∵EF为⊙O的切线,
    ∴∠OFE=90°,
    ∵AB为直径,H为CD的中点
    ∴AB⊥CD,即∠BHE=90°,
    ∵∠ACF=65°,
    ∴∠AOF=130°,
    ∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,
    故答案为:50°.
    15、且
    【解析】
    ∵式子在实数范围内有意义,
    ∴x+1≥0,且x≠0,
    解得:x≥-1且x≠0.
    故答案为x≥-1且x≠0.
    16、2
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:当a+b=2时,
    原式=
    =
    =a+b
    =2
    故答案为:2
    点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
    17、1
    【解析】
    根据二次根式的乘法法则进行计算即可.
    【详解】

    故答案为:1.
    【点睛】
    考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.
    18、
    【解析】
    分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
    详解:∵AB=4,BC=3,
    ∴AC=BD=5,
    转动一次A的路线长是:
    转动第二次的路线长是:
    转动第三次的路线长是:
    转动第四次的路线长是:0,
    以此类推,每四次循环,
    故顶点A转动四次经过的路线长为:
    ∵2017÷4=504…1,
    ∴顶点A转动四次经过的路线长为:
    故答案为
    点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、解:(1)图见解析;
    (2)证明见解析.
    【解析】
    (1)根据角平分线的作法作出∠ABC的平分线即可.
    (2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可.
    【详解】
    解:(1)如图所示:

    (2)证明:∵BE平分∠ABC,
    ∴∠ABE=∠EAF.
    ∵平行四边形ABCD中,AD//BC
    ∴∠EBF=∠AEB,
    ∴∠ABE=∠AEB.
    ∴AB=AE.
    ∵AO⊥BE,
    ∴BO=EO.
    ∵在△ABO和△FBO中,
    ∠ABO=∠FBO ,BO=EO,∠AOB=∠FOB,
    ∴△ABO≌△FBO(ASA).
    ∴AO=FO.
    ∵AF⊥BE,BO=EO,AO=FO.
    ∴四边形ABFE为菱形.
    20、 (1)证明见解析;(2) △APQ是等边三角形.
    【解析】
    (1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
    (2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
    【详解】
    证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
    在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
    (2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
    ∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
    ∴△APQ是等边三角形.
    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
    21、(1)BD,CE的关系是相等;(2)或;(3)1,1
    【解析】
    分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
    (2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
    (3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
    详解:(1)BD,CE的关系是相等.
    理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
    ∴BA=CA,∠BAD=∠CAE,DA=EA,
    ∴△ABD≌△ACE,
    ∴BD=CE;
    故答案为相等.
    (2)作出旋转后的图形,若点C在AD上,如图2所示:

    ∵∠EAC=90°,
    ∴CE=,
    ∵∠PDA=∠AEC,∠PCD=∠ACE,
    ∴△PCD∽△ACE,
    ∴,
    ∴PD=;
    若点B在AE上,如图2所示:

    ∵∠BAD=90°,
    ∴Rt△ABD中,BD=,BE=AE﹣AB=2,
    ∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
    ∴△BAD∽△BPE,
    ∴,即,
    解得PB=,
    ∴PD=BD+PB=+=,
    故答案为或;
    (3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
    如图3所示,分两种情况讨论:

    在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
    ①当小三角形旋转到图中△ACB的位置时,
    在Rt△ACE中,CE==4,
    在Rt△DAE中,DE=,
    ∵四边形ACPB是正方形,
    ∴PC=AB=3,
    ∴PE=3+4=1,
    在Rt△PDE中,PD=,
    即旋转过程中线段PD的最小值为1;
    ②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
    此时,DP'=4+3=1,
    即旋转过程中线段PD的最大值为1.
    故答案为1,1.
    点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
    22、(1)证明见解析;(2)补图见解析;.
    【解析】
    根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;
    根据平行线的判定定理得到AD∥BG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到 ,过点B作 于H,根据平行四边形的面积公式即可得到结论.
    【详解】
    解:,








    补全图形,如图所示:

    ,,
    ,,
    ,,

    ,,且,



    四边形ABGD是平行四边形,

    平行四边形ABGD是菱形,
    设,



    过点B作于H,


    故答案为(1)证明见解析;(2)补图见解析;.
    【点睛】
    本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.
    23、大型标牌上端与下端之间的距离约为3.5m.
    【解析】
    试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE的长,用CE的长减去DE的长即可得到上端和下端之间的距离.
    试题解析:
    设AB,CD 的延长线相交于点E,
    ∵∠CBE=45°,
    CE⊥AE,
    ∴CE=BE,
    ∵CE=16.65﹣1.65=15,
    ∴BE=15,
    而AE=AB+BE=1.
    ∵∠DAE=30°,
    ∴DE==11.54,
    ∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),
    答:大型标牌上端与下端之间的距离约为3.5m.

    24、15天
    【解析】
    试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.
    试题解析:设工程期限为x天.
    根据题意得,
    解得:x=15.
    经检验x=15是原分式方程的解.
    答:工程期限为15天.
    25、135° m+n
    【解析】
    试题分析:
    (1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
    (2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
    (4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
    试题解析:
    (1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
    ∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
    ∴△EAC≌△BAD,
    ∴∠BDA=∠ECA;
    (2)如下图,过点E作EG⊥CB交CB的延长线于点G,
    ∴∠EGB=90°,
    ∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
    ∴∠ABE=45°,BE=2,
    ∵∠ABC=75°,
    ∴∠EBG=180°-75°-45°=60°,
    ∴BG=1,EG=,
    ∴GC=BG+BC=4,
    ∴CE=,
    ∵△EAC≌△BAD,
    ∴BD=EC=;

    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
    ∵BD=EC,
    ∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
    即当∠ABC=135°时,BD最大=;
    (4)∵△ABD≌△AEC,
    ∴∠AEC=∠ABD,
    ∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
    ∴∠ABD+∠ABE+∠CEB=90°,
    ∴∠BFE=180°-90°=90°,
    ∴EF2+BF2=BE2,
    又∵在等腰Rt△ABE中,BE2=2AE2,
    ∴2AE2=EF2+BF2.
    点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
    26、(1)(0,3);(2).
    【解析】
    (1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
    (2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
    【详解】
    (1)在Rt△AOB中,
    ∵,
    ∴,
    ∴OB=3,
    ∴点B的坐标是(0,3) .
    (2)∵=BC•OA,
    ∴BC×2=4,
    ∴BC=4,
    ∴C(0,-1).
    设的解析式为,
    把A(2,0),C(0,-1)代入得:,
    ∴,
    ∴的解析式为是.
    考点:一次函数的性质.
    27、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.
    【解析】
    (1) 根据称职的人数及其所占百分比求得总人数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 .
    (2) 根据中位数和众数的定义求解可得;
    (3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 .
    【详解】
    (1)依题可得:
    “不称职”人数为:2+2=4(人),
    “基本称职”人数为:2+3+3+2=10(人),
    “称职”人数为:4+5+4+3+4=20(人),
    ∴总人数为:20÷50%=40(人),
    ∴不称职”百分比:a=4÷40=10%,
    “基本称职”百分比:b=10÷40=25%,
    “优秀”百分比:d=1-10%-25%-50%=15%,
    ∴“优秀”人数为:40×15%=6(人),
    ∴得26分的人数为:6-2-1-1=2(人),
    补全统计图如图所示:

    (2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,
    “优秀”25万2人,26万2人,27万1人,28万1人;
    “称职”的销售员月销售额的中位数为:22万,众数:21万;
    “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;
    (3)由(2)知月销售额奖励标准应定为22万.
    ∵“称职”和“优秀”的销售员月销售额的中位数为:22万,
    ∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.
    【点睛】
    考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.

    相关试卷

    2023年广西贺州市昭平县中考数学二模试卷(含解析): 这是一份2023年广西贺州市昭平县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西贺州市昭平县中考数学三模试卷(含解析): 这是一份2023年广西贺州市昭平县中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西贺州市昭平县中考数学一模试卷(含答案): 这是一份2023年广西贺州市昭平县中考数学一模试卷(含答案),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map