广东省吴川一中学实验校2021-2022学年中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
2.不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
3.下列运算正确的是( )
A. B.
C. D.
4.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
5.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1 B. C.-1 D.+1
6.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是( )
A.抛物线开口向下
B.抛物线与x轴的交点为(﹣1,0),(3,0)
C.当x=1时,y有最大值为0
D.抛物线的对称轴是直线x=
7.下列各数中,为无理数的是( )
A. B. C. D.
8.不等式的解集在数轴上表示正确的是( )
A. B. C. D.
9.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
10.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.抛物线y=(x+1)2 - 2的顶点坐标是 ______ .
12.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
13.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.
14.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .
15.二次根式在实数范围内有意义,x的取值范围是_____.
16.一元二次方程x﹣1=x2﹣1的根是_____.
三、解答题(共8题,共72分)
17.(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,
教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).
求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).
18.(8分)如图,已知:,,,求证:.
19.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.
20.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=,求AB的长.
21.(8分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.
22.(10分) ( 1)计算: ﹣4sin31°+(2115﹣π)1﹣(﹣3)2
(2)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.
23.(12分)如图,直线与双曲线相交于、两点.
(1) ,点坐标为 .
(2)在轴上找一点,在轴上找一点,使的值最小,求出点两点坐标
24.如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
(1)判断△ABC的形状,并证明你的结论;
(2)如图1,若BE=CE=,求⊙A的面积;
(3)如图2,若tan∠CEF=,求cos∠C的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
2、C
【解析】
分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.
【详解】
解:解不等式﹣x+7<x+3得:x>2,
解不等式3x﹣5≤7得:x≤4,
∴不等式组的解集为:2<x≤4,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
3、D
【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
【详解】
解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.
【点睛】
本题考查了整式的乘法,解题的关键是掌握有关计算法则.
4、B
【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.
【详解】
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴.
∵点B坐标为(6,1),
∴D的横坐标为6,E的纵坐标为1.
∵D,E在反比例函数的图象上,
∴D(6,1),E(,1),
∴BE=6﹣=,BD=1﹣1=3,
∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF•ED=BE•BD,即BF=3×,
∴BF=,
∴BB′=.
设EG=x,则BG=﹣x.
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=.
故选B.
【点睛】
本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
5、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
6、D
【解析】
A、由a=1>0,可得出抛物线开口向上,A选项错误;
B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、由抛物线开口向上,可得出y无最大值,C选项错误;
D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
综上即可得出结论.
【详解】
解:A、∵a=1>0,
∴抛物线开口向上,A选项错误;
B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
∴c=1,
∴抛物线的解析式为y=x1-3x+1.
当y=0时,有x1-3x+1=0,
解得:x1=1,x1=1,
∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
C、∵抛物线开口向上,
∴y无最大值,C选项错误;
D、∵抛物线的解析式为y=x1-3x+1,
∴抛物线的对称轴为直线x=-=-=,D选项正确.
故选D.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
7、D
【解析】
A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,
故选D.
8、B
【解析】
根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.
【详解】
解:解:移项得,
x≤3-2,
合并得,
x≤1;
在数轴上表示应包括1和它左边的部分,如下:
;
故选:B.
【点睛】
本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示.
9、C
【解析】
A、B、D不是该几何体的视图,C是主视图,故选C.
【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
10、C
【解析】
试题分析:根据主视图是从正面看得到的图形,可得答案.
解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
故选C.
考点:简单组合体的三视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、 (-1,-2)
【解析】
试题分析:因为y=(x+1)2﹣2是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),
故答案为(﹣1,﹣2).
考点:二次函数的性质.
12、4.02×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:40.2万=4.02×1,
故答案为:4.02×1.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
13、
【解析】
过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=
【详解】
解:
如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.
∵∠OAB=30°,∠ADE=90°,∠DEB=90°
∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°
∴∠DOA=∠OBE
∴△ADO∽△OEB
∵∠OAB=30°,∠AOB=90°,
∴OA∶OB=
∵点A坐标为(3,2)
∴AD=3,OD=2
∵△ADO∽△OEB
∴
∴OE
∵OC∥AD∥BE
根据平行线分线段成比例得:
AC:BC=OD:OE=2∶=
故答案为.
【点睛】
本题考查三角形相似的证明以及平行线分线段成比例.
14、3
【解析】
试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.
考点:3.菱形的性质;3.解直角三角形;3.网格型.
15、x≤1
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,1﹣x≥0,
解得,x≤1,
故答案为x≤1.
【点睛】
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
16、x=0或x=1.
【解析】
利用因式分解法求解可得.
【详解】
∵(x﹣1)﹣(x+1)(x﹣1)=0,
∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,
则x=0或x=1,
故答案为:x=0或x=1.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
三、解答题(共8题,共72分)
17、(1)2m(2)27m
【解析】
(1)首先构造直角三角形△AEM,利用,求出即可.
(2)利用Rt△AME中,,求出AE即可.
【详解】
解:(1)过点E作EM⊥AB,垂足为M.
设AB为x.
在Rt△ABF中,∠AFB=45°,
∴BF=AB=x,
∴BC=BF+FC=x+1.
在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,
又∵,∴,解得:x≈2.
∴教学楼的高2m.
(2)由(1)可得ME=BC=x+1≈2+1=3.
在Rt△AME中,,
∴AE=MEcos22°≈.
∴A、E之间的距离约为27m.
18、证明见解析;
【解析】
根据HL定理证明Rt△ABC≌Rt△DEF,根据全等三角形的性质证明即可.
【详解】
,BE为公共线段,
∴CE+BE=BF+BE,
即
又,
在与中,
≌
∴AC=DF.
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
19、证明见解析
【解析】
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF
∴AD-AE=BC-CF
即DE=BF
∴四边形BFDE是平行四边形.
20、(1)证明见解析(2)3
【解析】
(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
【详解】
相切,连接,
∵为的中点,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴直线与相切;
方法:连接,
∵,,
∵,
∴,
∵是的切线,
∴,
∴,
∴,
∵为的中点,
∴,
∵为的直径,
∴,
∴.
方法:∵,
易得,
∴,
∴.
【点睛】
本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
21、这种测量方法可行,旗杆的高为21.1米.
【解析】
分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
详解:这种测量方法可行.
理由如下:
设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).
所以△AGF∽△EHF.
因为FD=1.1,GF=27+3=30,HF=3,
所以EH=3.1﹣1.1=2,AG=x﹣1.1.
由△AGF∽△EHF,
得,
即,
所以x﹣1.1=20,
解得x=21.1(米)
答:旗杆的高为21.1米.
点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
22、 (1)-7;(2) ,.
【解析】
(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;
(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.
【详解】
(1)原式=3−4×+1−9=−7;
(2)原式=1− ×=1− = =−;
∵|x−2|+(2x−y−3)2=1,
∴,
解得:x=2,y=1,
当x=2,y=1时,原式=−.
故答案为(1)-7;(2)−;−.
【点睛】
本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.
23、 (1),;(1),.
【解析】
(1)由点A在一次函数图象上,将A(-1,a)代入y=x+4,求出a的值,得到点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA.利用待定系数法求出直线A′B′的解析式,进而求出P、Q两点坐标.
【详解】
解:(1)把点A(-1,a)代入一次函数y=x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(-1,3).
把点A(-1,3)代入反比例函数y=,
得:k=-3,
∴反比例函数的表达式y=-.
联立两个函数关系式成方程组得:
解得: 或
∴点B的坐标为(-3,1).
故答案为3,(-3,1);
(1)作点A关于y轴的对称点A′,作点B作关于x轴的对称点B′,连接A′B′,交x轴于点P,交y轴于点Q,连接PB、QA,如图所示.
∵点B、B′关于x轴对称,点B的坐标为(-3,1),
∴点B′的坐标为(-3,-1),PB=PB′,
∵点A、A′关于y轴对称,点A的坐标为(-1,3),
∴点A′的坐标为(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
设直线A′B′的解析式为y=mx+n,
把A′,B′两点代入得:
解得:
∴直线A′B′的解析式为y=x+1.
令y=0,则x+1=0,解得:x=-1,点P的坐标为(-1,0),
令x=0,则y=1,点Q的坐标为(0,1).
【点睛】
本题考查反比例函数与一次函数的交点问题、待定系数法求函数解析式、轴对称中的最短线路问题,解题的关键是:(1)联立两函数解析式成方程组,解方程组求出交点坐标;(1)根据轴对称的性质找出点P、Q的位置.本题属于基础题,难度适中,解决该题型题目时,联立解析式成方程组,解方程组求出交点坐标是关键.
24、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
【解析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
【详解】
解:∵,
∴,
∴△CEF∽△CBE,
∴∠CBE=∠CEF,
∵AE=AD,
∴∠ADE=∠AED=∠FEC=∠CBE,
∵BD为直径,
∴∠ADE+∠ABE=90°,
∴∠CBE+∠ABE=90°,
∴∠DBC=90°△ABC为直角三角形.
(2)∵BE=CE
∴设∠EBC=∠ECB=x,
∴∠BDE=∠EBC=x,
∵AE=AD
∴∠AED=∠ADE=x,
∴∠CEF=∠AED=x
∴∠BFE=2x
在△BDF中由△内角和可知:
3x=90°
∴x=30°
∴∠ABE=60°
∴AB=BE=
∴
(3)由(1)知:∠D=∠CFE=∠CBE,
∴tan∠CBE=,
设EF=a,BE=2a,
∴BF=,BD=2BF=,
∴AD=AB=,
∴,DE=2BE=4a,过F作FK∥BD交CE于K,
∴,
∵,
∴
∴,
∴tan∠C=
∴cos∠C=.
【点睛】
此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
广东省深圳市南山外国语校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份广东省深圳市南山外国语校2021-2022学年中考数学最后冲刺模拟试卷含解析,共16页。试卷主要包含了计算的结果是,若分式有意义,则a的取值范围为,若点M等内容,欢迎下载使用。
2022年潮南区实验中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年潮南区实验中学中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,八边形的内角和为,不等式组的解集是,一次函数的图象不经过等内容,欢迎下载使用。
2021-2022学年江苏省无锡市江阴市南菁高中学实验校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年江苏省无锡市江阴市南菁高中学实验校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了a、b是实数,点A等内容,欢迎下载使用。