广东省汕头市潮阳实验校2022年中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AD是半圆O的直径,AD=12,B,C是半圆O上两点.若,则图中阴影部分的面积是( )
A.6π B.12π C.18π D.24π
2.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )
A. B. C. D.
3.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
4.下列实数中是无理数的是( )
A. B.π C. D.
5.下列式子中,与互为有理化因式的是( )
A. B. C. D.
6.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4 B..5 C.6 D.8
7.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
8.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
9.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
A. B. C. D.
10.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
11.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为( )
A.﹣ B.﹣3 C. D.3
12.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为( )
A.42° B.66° C.69° D.77°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).
14.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.
15.已知 x(x+1)=x+1,则x=________.
16.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH; ④EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)
17.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数共占总天数的百分比为______%.
18.计算:(2018﹣π)0=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.求y关于x的函数关系式;(不需要写定义域)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
20.(6分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是 人,扇形C的圆心角是 °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?
21.(6分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.
甲
乙
丙
每辆汽车能装的数量(吨)
4
2
3
每吨水果可获利润(千元)
5
7
4
(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?
(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)
(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
22.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)
23.(8分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,
24.(10分)(1)解方程:x2﹣5x﹣6=0;
(2)解不等式组:.
25.(10分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
26.(12分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b= ,c= ,点C的坐标为 .如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.
27.(12分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图①所示,S与x的函数关系图象如图②所示:
(1)图中的a=______,b=______.
(2)求快车在行驶的过程中S关于x的函数关系式.
(3)直接写出两车出发多长时间相距200km?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
【详解】
∵,
∴∠AOB=∠BOC=∠COD=60°.
∴阴影部分面积=.
故答案为:A.
【点睛】
本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.
2、D
【解析】
两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.
【详解】
因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,
所以P(飞镖落在黑色区域)==.
故答案选:D.
【点睛】
本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.
3、A
【解析】
将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.
【详解】
(1)当时,,此时,
∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;
(2)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;
(3)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;
(4)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;
故选A.
【点睛】
熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.
4、B
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
A、是分数,属于有理数;
B、π是无理数;
C、=3,是整数,属于有理数;
D、-是分数,属于有理数;
故选B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
5、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
6、C
【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
,
即,
解得EF=6,
故选C.
7、D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x)2=144,
故选D.
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
8、D
【解析】
根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】
∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=,
故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
9、D
【解析】试题分析:俯视图是从上面看到的图形.
从上面看,左边和中间都是2个正方形,右上角是1个正方形,
故选D.
考点:简单组合体的三视图
10、B
【解析】
先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
【详解】
解:设直线AB的解析式为y=mx+n.
∵A(−2,0),B(0,1),
∴ ,
解得 ,
∴直线AB的解析式为y=2x+1.
将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
所以直线l的表达式是y=2x−2.
故选:B.
【点睛】
本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
11、B
【解析】
设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
【详解】
设该点的坐标为(a,b),则|b|=1|a|,
∵点(a,b)在正比例函数y=kx的图象上,
∴k=±1.
又∵y值随着x值的增大而减小,
∴k=﹣1.
故选:B.
【点睛】
本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
12、C
【解析】
在△ABC中,∠ACB=90°,∠A=24°,
∴∠B=90°-∠A=66°.
由折叠的性质可得:∠BCD=∠ACB=45°,
∴∠BDC=180°-∠BCD-∠B=69°.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、或
【解析】
当F在边AB上时,如图1作辅助线,先证明≌,得,,根据正切的定义表示即可;
当F在BA的延长线上时,如图2,同理可得:≌,表示AF的长,同理可得结论.
【详解】
解:分两种情况:
当F在边AB上时,如图1,
过E作,交AB于G,交DC于H,
四边形ABCD是正方形,
,,,
,,
,
,
≌,
,
,
,
中,,
即;
当F在BA的延长线上时,如图2,
同理可得:≌,
,
,
,
中,.
【点睛】
本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论.
14、1:3:5
【解析】
∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD=DF=FB,
∴AD:AF:AB=1:2:3,
∴ =1:4:9,
∴SⅠ:SⅡ:SⅢ=1:3:5.
故答案为1:3:5.
点睛: 本题考查了平行线的性质及相似三角形的性质.相似三角形的面积比等于相似比的平方.
15、1或-1
【解析】
方程可化为:
,
∴或,
∴或.
故答案为1或-1.
16、②③④
【解析】
①可用特殊值法证明,当为的中点时,,可见.
②可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.
③先证明,得到,再根据,得到,代换可得.
④根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.
【详解】
解:
①错误.当为的中点时,,可见;
②正确.
如图,连接,交于点,
,
,,,
四边形为矩形,
,
,
,
,
,
,
.
③正确.
,
,
,
,
,
又,
,
,
,
,
.
④正确.
且四边形为矩形,
,
当时,取最小值,
此时,
故的最小值为.
故答案为:②③④.
【点睛】
本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.
17、80
【解析】
【分析】先求出AQI在0~50的频数,再根据%,求出百分比.
【详解】由图可知AQI在0~50的频数为10,
所以,空气质量类别为优和良的天数共占总天数的百分比为:%=80%..
故答案为80
【点睛】本题考核知识点:数据的分析.解题关键点:从统计图获取信息,熟记百分比计算方法.
18、1.
【解析】
根据零指数幂:a0=1(a≠0)可得答案.
【详解】
原式=1,
故答案为:1.
【点睛】
此题主要考查了零次幂,关键是掌握计算公式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【解析】
【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
【详解】(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,1)代入y=kx+b中,得
,解得:,
∴该一次函数解析式为y=﹣x+1;
(2)当y=﹣x+1=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.
20、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.
【解析】
(1)由D组频数及其所占比例可得总人数,用360°乘以C组人数所占比例可得;
(2)用总人数分别乘以A、B组的百分比求得其人数,再用总人数减去A、B、C、D的人数求得E组的人数可得;
(3)用总人数乘以样本中A、B组的百分比之和可得.
【详解】
解:(1)抽取学生的总人数为78÷26%=300人,扇形C的圆心角是360°×=144°,
故答案为300、144;
(2)A组人数为300×7%=21人,B组人数为300×17%=51人,
则E组人数为300﹣(21+51+120+78)=30人,
补全频数分布直方图如下:
(3)该校创新意识不强的学生约有2200×(7%+17%)=528人.
【点睛】
考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.
21、(1)乙种水果的车有2辆、丙种水果的汽车有6辆;(2)乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)见解析.
【解析】
(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解
答;
(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组即可解答;
(3)设总利润为w千元,表示出w=10m+1.列出不等式组确定m的取值范围13≤m≤15.5,结合一次函数的性质,即可解答.
【详解】
解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:
解得:
答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.
(2)设装运乙、丙水果的车分别为a辆,b辆,得:
,
解得:
答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.
(3)设总利润为w千元,
w=5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+1.
∵
∴13≤m≤15.5,
∵m为正整数,
∴m=13,14,15,
在w=10m+1中,w随m的增大而增大,
∴当m=15时,W最大=366(千元),
答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.
【点睛】
此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值,需确定
自变量的取值范围.
22、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
【解析】
分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
详解:过P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:1,
设PF=5x,CF=1x,
∵四边形BFPE为矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+10x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的铅直高度约为14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=17.1.
答:从P到点B的路程约为17.1米.
点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
23、(1)见解析;(2)EC=1.
【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;
(2)根据解直角三角形和等边三角形的性质即可得到结论.
【详解】
(1)∵AB=AC,
∴∠B=∠C,
∵FE⊥BC,
∴∠F+∠C=90°,∠BDE+∠B=90°,
∴∠F=∠BDE,
而∠BDE=∠FDA,
∴∠F=∠FDA,
∴AF=AD,
∴△ADF是等腰三角形;
(2)∵DE⊥BC,
∴∠DEB=90°,
∵∠B=60°,BD=1,
∴BE=BD=2,
∵AB=AC,
∴△ABC是等边三角形,
∴BC=AB=AD+BD=6,
∴EC=BC﹣BE=1.
【点睛】
本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.
24、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)先求出不等式的解集,再求出不等式组的解集即可.
【详解】
(1)x2﹣5x﹣6=0,
(x﹣6)(x+1)=0,
x﹣6=0,x+1=0,
x1=6,x2=﹣1;
(2)
∵解不等式①得:x≥﹣1,
解不等式②得:x<1,
∴不等式组的解集为﹣1≤x<1.
【点睛】
本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.
25、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
【解析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
【详解】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
根据题意得:18x+12(20﹣x)=300,
解得:x=10,
则20﹣x=20﹣10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
根据题意得:13y+8.8(20﹣y)≤239,
解得:y≤15,
根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
26、(3)3, 2,C(﹣2,4);(2)y=﹣m2+m ,PQ与OQ的比值的最大值为;(3)S△PBA=3.
【解析】
(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
(3)求得P点坐标,利用图形割补法求解即可.
【详解】
(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.
∴A(2,4),B(4,2).
又∵抛物线过B(4,2)
∴c=2.
把A(2,4)代入y=﹣x2+bx+2得,
4=﹣×22+2b+2,解得,b=3.
∴抛物线解析式为,y=﹣x2+x+2.
令﹣x2+x+2=4,
解得,x=﹣2或x=2.
∴C(﹣2,4).
(2)如图3,
分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.
设P(m,﹣m2+m+2),Q(n,﹣n+2),
则PE=﹣m2+m+2,QD=﹣n+2.
又∵=y.
∴n=.
又∵,即
把n=代入上式得,
整理得,2y=﹣m2+2m.
∴y=﹣m2+m.
ymax=.
即PQ与OQ的比值的最大值为.
(3)如图2,
∵∠OBA=∠OBP+∠PBA=25°
∠PBA+∠CBO=25°
∴∠OBP=∠CBO
此时PB过点(2,4).
设直线PB解析式为,y=kx+2.
把点(2,4)代入上式得,4=2k+2.
解得,k=﹣2
∴直线PB解析式为,y=﹣2x+2.
令﹣2x+2=﹣x2+x+2
整理得, x2﹣3x=4.
解得,x=4(舍去)或x=5.
当x=5时,﹣2x+2=﹣2×5+2=﹣7
∴P(5,﹣7).
过P作PH⊥cy轴于点H.
则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.
S△OAB=OA•OB=×2×2=7.
S△BHP=PH•BH=×5×3=35.
∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.
【点睛】
本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.
27、(1)a=6, b=;(2) ;(3)或5h
【解析】
(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;
(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.
(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.
【详解】
解:(1)由s与x之间的函数的图像可知:
当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,
∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,
∴;
(2)∵从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),
∴设线段AB所在直线解析式为:S=kx+b,
∴
解得:k=-160,b=600,
设线段BC所在的直线的解析式为:S=kx+b,
∴
解得:k=160,b=-600,
设直线CD的解析式为:S=kx+b,
解得:k=60,b=0
∴
(3)当两车相遇前相距200km,
此时:S=-160x+600=200,解得:,
当两车相遇后相距200km,
此时:S=160x-600=200,解得:x=5,
∴或5时两车相距200千米
【点睛】
本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.
2022年汕头市重点中学中考考前最后一卷数学试卷含解析: 这是一份2022年汕头市重点中学中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年广东省汕头市苏湾中学中考考前最后一卷数学试卷含解析: 这是一份2022年广东省汕头市苏湾中学中考考前最后一卷数学试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中比﹣1小的数是,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析: 这是一份2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。