终身会员
搜索
    上传资料 赚现金
    广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析01
    广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析02
    广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析

    展开
    这是一份广东省惠州光正实验达标名校2021-2022学年中考试题猜想数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为( )
    A.0B.﹣1C.1D.72017
    2.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为( )
    A.50° B.55° C.60° D.65°
    3.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
    A.B.C.D.
    4.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
    A.1B.3C.4D.5
    5.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
    A.B.C.D.
    6.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( )
    A.方差是8B.极差是9C.众数是﹣1D.平均数是﹣1
    7.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于( )
    A.∠EDBB.∠BEDC.∠EBDD.2∠ABF
    8.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为( )
    A.﹣12B.﹣32C.32D.﹣36
    9.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为
    A.B.
    C.D.
    10.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为( )
    A.1000(1+x)2=1000+440B.1000(1+x)2=440
    C.440(1+x)2=1000D.1000(1+2x)=1000+440
    二、填空题(共7小题,每小题3分,满分21分)
    11.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.
    12.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .
    13.在反比例函数图象的每一支上,y随x的增大而______用“增大”或“减小”填空.
    14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
    15.方程组的解是________.
    16.若a、b为实数,且b=+4,则a+b=_____.
    17.如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,则正方形ABCD的边长为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
    设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.
    19.(5分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)
    20.(8分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
    (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
    (2)当每辆车的日租金为多少元时,每天的净收入最多?
    21.(10分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.
    (1)求证:CD与⊙O相切;
    (2)若BF=24,OE=5,求tan∠ABC的值.
    22.(10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.
    (1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;
    (2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为 ,AD的长为 .
    23.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
    (1)求证:四边形AECF为菱形;
    (2)若AB=4,BC=8,求菱形AECF的周长.
    24.(14分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)
    小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
    请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 三角形;∠ADB的度数为 .在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为 .
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.
    【详解】
    解:由题意,得
    a=-4,b=1.
    (a+b)2017=(-1)2017=-1,
    故选B.
    【点睛】
    本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.
    2、D
    【解析】
    试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
    考点:圆的基本性质
    3、D
    【解析】
    【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
    【详解】由二次函数的图象可知,
    ,,
    当时,,
    的图象经过二、三、四象限,
    观察可得D选项的图象符合,
    故选D.
    【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
    4、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    【点睛】
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
    5、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    6、A
    【解析】
    根据题意可知x=-1,
    平均数=(-6-1-1-1+2+1)÷6=-1,
    ∵数据-1出现两次最多,
    ∴众数为-1,
    极差=1-(-6)=2,
    方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
    故选A.
    7、C
    【解析】
    根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案.
    【详解】
    在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.
    【点睛】
    .
    本题主要考查全等三角形的判定与性质,熟悉掌握是关键.
    8、B
    【解析】
    解:
    ∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
    ∴OA=5,AB∥OC,
    ∴点B的坐标为(8,﹣4),
    ∵函数y=(k<0)的图象经过点B,
    ∴﹣4=,得k=﹣32.
    故选B.
    【点睛】
    本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
    9、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    10、A
    【解析】
    根据题意可以列出相应的一元二次方程,从而可以解答本题.
    【详解】
    解:由题意可得,
    1000(1+x)2=1000+440,
    故选:A.
    【点睛】
    此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
    【详解】
    解:如图,设AH=x,GB=y,
    ∵EH∥BC,

    ∵FG∥AC,

    由①②可得x=,y=2,
    ∴AC=,BC=7,
    ∴S△ABC=,
    故答案为.
    【点睛】
    本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
    12、0或1
    【解析】
    分析:需要分类讨论:
    ①若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;
    ②若m≠0,则函数y=mx2+2x+1是二次函数,
    根据题意得:△=4﹣4m=0,解得:m=1。
    ∴当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。
    13、减小
    【解析】
    根据反比例函数的性质,依据比例系数k的符号即可确定.
    【详解】
    ∵k=2>0,
    ∴y随x的增大而减小.
    故答案是:减小.
    【点睛】
    本题考查了反比例函数的性质,反比例函数y=(k≠0)的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
    14、28
    【解析】
    设这种电子产品的标价为x元,
    由题意得:0.9x−21=21×20%,
    解得:x=28,
    所以这种电子产品的标价为28元.
    故答案为28.
    15、
    【解析】
    利用加减消元法进行消元求解即可
    【详解】
    解:
    由①+②,得
    3x=6
    x=2
    把x=2代入①,得
    2+3y=5
    y=1
    所以原方程组的解为:
    故答案为:
    【点睛】
    本题考查了二元一次方程组的解法,用适当的方法解二元一次方程组是解题的关键.
    16、5或1
    【解析】
    根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案.
    【详解】
    由被开方数是非负数,得

    解得a=1,或a=﹣1,b=4,
    当a=1时,a+b=1+4=5,
    当a=﹣1时,a+b=﹣1+4=1,
    故答案为5或1.
    【点睛】
    本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
    17、
    【解析】
    分析:连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
    详解:连接AC,交EF于点M,
    ∵AE丄EF,EF丄FC,
    ∴∠E=∠F=90°,
    ∵∠AME=∠CMF,
    ∴△AEM∽△CFM,
    ∴,
    ∵AE=1,EF=FC=3,
    ∴,
    ∴EM=,FM=,
    在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,
    在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,
    ∴AC=AM+CM=5,
    在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,
    ∴AB=,即正方形的边长为.
    故答案为:.
    点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用.
    三、解答题(共7小题,满分69分)
    18、(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
    【解析】
    试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案.
    试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,
    从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,
    所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,
    x的取值范围是30≤x≤1.
    (2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=1时总运费最小,
    当x=1时,y=﹣8×1+2560=1920,
    此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.
    考点:一次函数的应用.
    19、详见解析
    【解析】
    先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
    【详解】
    如图
    作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
    【点睛】
    本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
    20、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.
    【解析】
    试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
    试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,
    由50x﹣1100>0,
    解得x>22,
    又∵x是5的倍数,
    ∴每辆车的日租金至少应为25元;
    (2)设每辆车的净收入为y元,
    当0<x≤100时,y1=50x﹣1100,
    ∵y1随x的增大而增大,
    ∴当x=100时,y1的最大值为50×100﹣1100=3900;
    当x>100时,
    y2=(50﹣)x﹣1100
    =﹣x2+70x﹣1100
    =﹣(x﹣175)2+5025,
    当x=175时,y2的最大值为5025,
    5025>3900,
    故当每辆车的日租金为175元时,每天的净收入最多是5025元.
    考点:二次函数的应用.
    21、(1)证明见解析;(2)
    【解析】
    试题分析:(1)过点O作OG⊥DC,垂足为G.先证明∠OAD=90°,从而得到∠OAD=∠OGD=90°,然后利用AAS可证明△ADO≌△GDO,则OA=OG=r,则DC是⊙O的切线;
    (2)连接OF,依据垂径定理可知BE=EF=1,在Rt△OEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在Rt△ABE中,利用锐角三角函数的定义求解即可.
    试题解析:
    (1)证明:
    过点O作OG⊥DC,垂足为G.
    ∵AD∥BC,AE⊥BC于E,
    ∴OA⊥AD.
    ∴∠OAD=∠OGD=90°.
    在△ADO和△GDO中

    ∴△ADO≌△GDO.
    ∴OA=OG.
    ∴DC是⊙O的切线.
    (2)如图所示:连接OF.
    ∵OA⊥BC,
    ∴BE=EF= BF=1.
    在Rt△OEF中,OE=5,EF=1,
    ∴OF=,
    ∴AE=OA+OE=13+5=2.
    ∴tan∠ABC=.
    【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键.
    22、 (1) 见解析;(2)
    【解析】
    (1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.
    (2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.
    【详解】
    解:(1)证明:
    连接OE、ED、OD,
    在Rt△ABC中,∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,∴△AEO是等边三角形,
    ∴AE=OE=AO
    ∵OD=OA,
    ∴AE=OD
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,又∵∠C=90°
    ∴AC∥OD,又∵AE=OD
    ∴四边形AODE是平行四边形,
    ∵OD=OA
    ∴四边形AODE是菱形.
    (2)
    在Rt△ABC中,∵AC=6,AB=10,
    ∴sin∠B==,BC=8
    ∵BC是圆O的切线,OD是半径,
    ∴∠ODB=90°,
    在Rt△OBD中,sin∠B==,
    ∴OB=OD
    ∵AO+OB=AB=10,
    ∴OD+OD=10
    ∴OD=
    ∴OB=OD=
    ∴BD=
    =5
    ∴CD=CB﹣BD=3
    ∴AD=
    =
    =3.
    【点睛】
    本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
    23、(1)见解析;(2)1
    【解析】
    (1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
    (2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
    【详解】
    (1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
    ∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
    在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
    又∵OA=OC,∴四边形AECF是平行四边形.
    又∵EF⊥AC,∴平行四边形AECF是菱形;
    (2)设AF=x.
    ∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
    【点睛】
    本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
    24、(1)①△D′BC是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣
    【解析】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;
    ②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.
    (1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).
    (3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    (1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
    ∵AB=AC,∠BAC=90°,
    ∴∠ABC=45°,
    ∵∠DBC=30°,
    ∴∠ABD=∠ABC﹣∠DBC=15°,
    在△ABD和△ABD′中,
    ∴△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABD′+∠ABC=60°,
    ∵BD=BD′,BD=BC,
    ∴BD′=BC,
    ∴△D′BC是等边三角形,
    ②∵△D′BC是等边三角形,
    ∴D′B=D′C,∠BD′C=60°,
    在△AD′B和△AD′C中,
    ∴△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (1)∵∠DBC<∠ABC,
    ∴60°<α≤110°,
    如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=α,
    ∴∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B
    ∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),
    ∵α+β=110°,
    ∴∠D′BC=60°,
    由(1)②可知,△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∴∠AD′B=∠BD′C=30°,
    ∴∠ADB=30°.
    (3)第①情况:当60°<α<110°时,如图3﹣1,
    由(1)知,∠ADB=30°,
    作AE⊥BD,
    在Rt△ADE中,∠ADB=30°,AD=1,
    ∴DE=,
    ∵△BCD'是等边三角形,
    ∴BD'=BC=7,
    ∴BD=BD'=7,
    ∴BE=BD﹣DE=7﹣;
    第②情况:当0°<α<60°时,
    如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.
    同理可得:∠ABC=(180°﹣α)=90°﹣α,
    ∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),
    同(1)①可证△ABD≌△ABD′,
    ∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,
    ∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),
    ∴D′B=D′C,∠BD′C=60°.
    同(1)②可证△AD′B≌△AD′C,
    ∴∠AD′B=∠AD′C,
    ∵∠AD′B+∠AD′C+∠BD′C=360°,
    ∴∠ADB=∠AD′B=150°,
    在Rt△ADE中,∠ADE=30°,AD=1,
    ∴DE=,
    ∴BE=BD+DE=7+,
    故答案为:7+或7﹣.
    【点睛】
    此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
    相关试卷

    2023-2024学年广东省惠州光正实验数学九上期末达标检测模拟试题含答案: 这是一份2023-2024学年广东省惠州光正实验数学九上期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知的图象如图,则和的图象为等内容,欢迎下载使用。

    2022-2023学年广东省惠州市惠城区光正实验学校八年级(下)期中数学试卷(含解析 ): 这是一份2022-2023学年广东省惠州市惠城区光正实验学校八年级(下)期中数学试卷(含解析 ),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    广东省惠州光正实验2022年中考联考数学试卷含解析: 这是一份广东省惠州光正实验2022年中考联考数学试卷含解析,共19页。试卷主要包含了已知二次函数y=3等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map