广东省深圳市福田片区2021-2022学年中考联考数学试题含解析
展开1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若关于x的不等式组只有5个整数解,则a的取值范围( )
A.B.C.D.
2.如图,由四个正方体组成的几何体的左视图是( )
A.B.C.D.
3.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2
4.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是( )
A.B.C.D.
5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )
A.27B.36C.27或36D.18
6.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
A.1.018×104B.1.018×105C.10.18×105D.0.1018×106
7.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
8.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )
A.甲B.乙C.丙D.丁
9.的值等于( )
A.B.C.D.
10.若代数式有意义,则实数x的取值范围是( )
A.x≠1B.x≥0C.x≠0D.x≥0且x≠1
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
12.二次函数的图象与y轴的交点坐标是________.
13.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.
14.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为____.
15.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.
16.函数中,自变量的取值范围是______
17.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
三、解答题(共7小题,满分69分)
18.(10分)解方程(2x+1)2=3(2x+1)
19.(5分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.
20.(8分)观察下列等式:
①1×5+4=32;
②2×6+4=42;
③3×7+4=52;
…
(1)按照上面的规律,写出第⑥个等式:_____;
(2)模仿上面的方法,写出下面等式的左边:_____=502;
(3)按照上面的规律,写出第n个等式,并证明其成立.
21.(10分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
23.(12分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
24.(14分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
【详解】
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
2、B
【解析】
从左边看可以看到两个小正方形摞在一起,故选B.
3、D
【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),
∴﹣1k+b=0,∴,解得:.
∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
∴,
解得0<k<1.
故选D.
【点睛】
两条直线相交或平行问题;一次函数图象上点的坐标特征.
4、D
【解析】
∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
∵0°<α<45°,∴0<x<1,
故选D.
【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
5、B
【解析】
试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
试题解析:分两种情况:
(3)当其他两条边中有一个为3时,将x=3代入原方程,
得:33-33×3+k=0
解得:k=37
将k=37代入原方程,
得:x3-33x+37=0
解得x=3或9
3,3,9不能组成三角形,不符合题意舍去;
(3)当3为底时,则其他两边相等,即△=0,
此时:344-4k=0
解得:k=3
将k=3代入原方程,
得:x3-33x+3=0
解得:x=6
3,6,6能够组成三角形,符合题意.
故k的值为3.
故选B.
考点:3.等腰三角形的性质;3.一元二次方程的解.
6、B
【解析】
.
故选B.
点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
7、C
【解析】
试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
考点:二次函数的顶点式、对称轴
点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
8、B
【解析】
利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
【详解】
∵五边形ABCDE是正五边形,△ABG是等边三角形,
∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
∴DG垂直平分线段AB,
∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
∴∠CDF=∠EDF=∠CFD=72°,
∴△CDF是等腰三角形.
故丁、甲、丙正确.
故选B.
【点睛】
本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
9、C
【解析】
试题解析:根据特殊角的三角函数值,可知:
故选C.
10、D
【解析】
试题分析:∵代数式有意义,
∴,
解得x≥0且x≠1.
故选D.
考点:二次根式,分式有意义的条件.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
【详解】
∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如图延长AD交⊙D于P′,此时AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=1,
∴a的最大值为1.
故答案为1.
【点睛】
圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径.
12、
【解析】
求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.
【详解】
把代入得:,
∴该二次函数的图象与y轴的交点坐标为,
故答案为.
【点睛】
本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.
13、210.
【解析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.
【详解】
∵∠1+∠2=210°,
∴∠ABC+∠BCD=180°×2﹣210°=150°,
∴∠A+∠D=360°﹣150°=210°.
故答案为:210.
【点睛】
本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.
14、
【解析】
依据旋转的性质,即可得到,再根据,,即可得出,.最后在中,可得到.
【详解】
依题可知,,,,∴,在中,,,,,.
∴在中,.
故答案为:.
【点睛】
本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
15、m>2
【解析】
试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣2>2.
解:因为抛物线y=(m﹣2)x2的开口向上,
所以m﹣2>2,即m>2,故m的取值范围是m>2.
考点:二次函数的性质.
16、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
17、1
【解析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
故填1.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
三、解答题(共7小题,满分69分)
18、x1=-,x2=1
【解析】
试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.
试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.
点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.
19、(1)证明见解析;(2)15.
【解析】
(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
【详解】
(1)证明:连结OD,∵∠ACB=90°,
∴∠A+∠B=90°,
又∵OD=OB,
∴∠B=∠BDO,
∵∠ADE=∠A,
∴∠ADE+∠BDO=90°,
∴∠ODE=90°.
∴DE是⊙O的切线;
(2)连结CD,∵∠ADE=∠A,
∴AE=DE.
∵BC是⊙O的直径,∠ACB=90°.
∴EC是⊙O的切线.
∴DE=EC.
∴AE=EC,
又∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC=
设BD=x,在Rt△BDC中,BC2=x2+122,
在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,解得x=9,
∴BC=.
【点睛】
考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
20、6×10+4=82 48×52+4
【解析】
(1)根据题目中的式子的变化规律可以解答本题;
(2)根据题目中的式子的变化规律可以解答本题;
(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
【详解】
解:(1)由题目中的式子可得,
第⑥个等式:6×10+4=82,
故答案为6×10+4=82;
(2)由题意可得,
48×52+4=502,
故答案为48×52+4;
(3)第n个等式是:n×(n+4)+4=(n+2)2,
证明:∵n×(n+4)+4
=n2+4n+4
=(n+2)2,
∴n×(n+4)+4=(n+2)2成立.
【点睛】
本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
21、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
【解析】
分析:(1)待定系数法求解可得;
(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.
详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
将点C(0,2)代入,得:-4a=2,
解得:a=-,
则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
(2)由题意知点D坐标为(0,-2),
设直线BD解析式为y=kx+b,
将B(4,0)、D(0,-2)代入,得:
,解得:,
∴直线BD解析式为y=x-2,
∵QM⊥x轴,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
则QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴当-m2+m+4=时,四边形DMQF是平行四边形,
解得:m=-1(舍)或m=3,
即m=3时,四边形DMQF是平行四边形;
(3)如图所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
则,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
此时m=-1,点Q的坐标为(-1,0);
综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.
【详解】
请在此输入详解!
22、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
23、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
【解析】
试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
试题解析:(1)树状图如下图:
则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
∴点M(x,y)在函数y=﹣的图象上的概率为:.
考点:列表法或树状图法求概率.
24、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
(Ⅲ)P().
【解析】
(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
(Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
【详解】
(Ⅰ)如图①中,作DH⊥BC于H,
∵△AOB是等边三角形,DC∥OA,
∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
∴△CDB是等边三角形,
∵CB=2,DH⊥CB,
∴CH=HB=,DH=3,
∴D(6﹣,3),
∵C′B=3,
∴CC′=2﹣3,
∴DD′=CC′=2﹣3,
∴D′(3+,3).
(Ⅱ)当BB'=时,四边形MBND'是菱形,
理由:如图②中,
∵△ABC是等边三角形,
∴∠ABO=60°,
∴∠ABB'=180°﹣∠ABO=120°,
∵BN是∠ACC'的角平分线,
∴∠NBB′'=∠ABB'=60°=∠D′C′B,
∴D'C'∥BN,∵AB∥B′D′
∴四边形MBND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MC′B'和△NBB'是等边三角形,
∴MC=CE',NC=CC',
∵B'C'=2,
∵四边形MBND'是菱形,
∴BN=BM,
∴BB'=B'C'=;
(Ⅲ)如图连接BP,
在△ABP中,由三角形三边关系得,AP<AB+BP,
∴当点A,B,P三点共线时,AP最大,
如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'==2.
此时P(,﹣).
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
2024年广东省深圳市福田区多校联考中考三模数学试题: 这是一份2024年广东省深圳市福田区多校联考中考三模数学试题,共8页。
2024年广东省深圳市福田区中考二模数学试题(原卷版+含解析): 这是一份2024年广东省深圳市福田区中考二模数学试题(原卷版+含解析),共33页。
精品解析:2023年广东省深圳市福田区八校中考联考数学试题: 这是一份精品解析:2023年广东省深圳市福田区八校中考联考数学试题,文件包含精品解析2023年广东省深圳市福田区八校中考联考数学试题原卷版docx、精品解析2023年广东省深圳市福田区八校中考联考数学试题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。