广东省深圳龙岗区六校联考2021-2022学年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( )
A.(,) B.(2,) C.(,) D.(,3﹣)
2.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )
A.3 B.4﹣ C.4 D.6﹣2
3.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
A.-1 B.- C. D.–π
4.下列计算正确的是( )
A.x2+x3=x5 B.x2•x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x3
5.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A. B. C. D.
6.如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.圆锥 C.四棱柱 D.圆柱
7.若关于的方程的两根互为倒数,则的值为( )
A. B.1 C.-1 D.0
8.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )
A. B. C. D.
9.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30° B.40° C.50° D.60°
10.cos30°=( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .
12.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.
13.因式分解:_________________.
14.不等式组的解集是 _____________.
15.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是__.
16.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
17.如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于________.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.
19.(5分)先化简代数式,再从﹣1,0,3中选择一个合适的a的值代入求值.
20.(8分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 .列表:
x
…
﹣2
﹣1
0
1
2
3
4
5
6
…
y
…
m
﹣1
﹣5
n
﹣1
…
表中m= ,n= .描点、连线
在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
观察所画出的函数图象,写出该函数的两条性质:
① ;
② .
21.(10分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:
(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;
(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);
(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);
(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.
22.(10分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)
23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
24.(14分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求O的半径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.
2、B
【解析】
分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
详解:如图,当点E旋转至y轴上时DE最小;
∵△ABC是等边三角形,D为BC的中点,
∴AD⊥BC
∵AB=BC=2
∴AD=AB•sin∠B=,
∵正六边形的边长等于其半径,正六边形的边长为2,
∴OE=OE′=2
∵点A的坐标为(0,6)
∴OA=6
∴DE′=OA-AD-OE′=4-
故选B.
点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
3、B
【解析】
根据两个负数,绝对值大的反而小比较.
【详解】
解:∵− >−1>− >−π,
∴负数中最大的是−.
故选:B.
【点睛】
本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
4、B
【解析】
分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
详解:A、不是同类项,无法计算,故此选项错误;
B、 正确;
C、 故此选项错误;
D、 故此选项错误;
故选:B.
点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
5、B
【解析】
根据俯视图是从上往下看的图形解答即可.
【详解】
从上往下看到的图形是:
.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
6、A
【解析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A.
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
7、C
【解析】
根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
【详解】
解:设、是的两根,
由题意得:,
由根与系数的关系得:,
∴k2=1,
解得k=1或−1,
∵方程有两个实数根,
则,
当k=1时,,
∴k=1不合题意,故舍去,
当k=−1时,,符合题意,
∴k=−1,
故答案为:−1.
【点睛】
本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
8、B
【解析】
连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
【详解】
解:连接OA、OB,
∵四边形ABCD是正方形,
∴∠AOB=90°,∠OAB=45°,
∴OA=ABcos45°=4×=2,
所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
故选B.
【点睛】
本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
9、C
【解析】
由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠B=70°,∠BAC=30°
∴∠ACB=80°
∵将△ABC绕点C顺时针旋转得△EDC.
∴AC=CE,∠ACE=∠ACB=80°
∴∠CAE=∠AEC=50°
故选C.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
10、C
【解析】
直接根据特殊角的锐角三角函数值求解即可.
【详解】
故选C.
【点睛】
考点:特殊角的锐角三角函数
点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
由图象可知,此时.
12、1
【解析】
设点P(m,m+2),
∵OP=,
∴ =,
解得m1=1,m2=﹣1(不合题意舍去),
∴点P(1,1),
∴1=,
解得k=1.
点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.
13、
【解析】
提公因式法和应用公式法因式分解.
【详解】
解: .
故答案为:
【点睛】
本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
14、x<-1
【解析】
解不等式①得:x<5,
解不等式②得:x<-1
所以不等式组的解集是x<-1.
故答案是:x<-1.
15、m>2
【解析】
试题分析:根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣2>2.
解:因为抛物线y=(m﹣2)x2的开口向上,
所以m﹣2>2,即m>2,故m的取值范围是m>2.
考点:二次函数的性质.
16、55.
【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
∴∠ACA’=35°,∠A =∠A’,.
∵∠A’DC=90°,
∴∠A’ =55°.
∴∠A=55°.
考点:1.旋转的性质;2.直角三角形两锐角的关系.
17、4
【解析】
连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,,,,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案.
【详解】
如图,连接并延长交于G,连接并延长交于H,
∵点E、F分别是和的重心,
∴,,,,
∵,
∴,
∵,,
∴,
∵,
∴,
∴,
∴,
故答案为:4
【点睛】
本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.
三、解答题(共7小题,满分69分)
18、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
【解析】
(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
【详解】
(1)∵∠ABO=90°,OB=1,S△BOD=1,
∴OB×BD=1,解得BD=2,
∴D(1,2)
将D(1,2)代入y=,
得2=,
∴k=8,
∴反比例函数解析式为y=;
(2)∵∠ABO=90°,OB=1,AB=8,
∴A点坐标为(1,8),
设直线OA的解析式为y=kx,
把A(1,8)代入得1k=8,解得k=2,
∴直线AB的解析式为y=2x,
解方程组得或,
∴C点坐标为(2,1).
19、,1
【解析】
先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a=3,计算即可得到答案.
【详解】
原式===,
当a=3时(a≠﹣1,0),原式=1.
【点睛】
本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.
20、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
【解析】
(1)分式的分母不等于零;
(2)把自变量的值代入即可求解;
(3)根据题意描点、连线即可;
(4)观察图象即可得出该函数的其他性质.
【详解】
(1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
故答案为:一切实数;
(2)m=,n=,
故答案为:-,-;
(3)建立适当的直角坐标系,描点画出图形,如下图所示:
(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
【点睛】
本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
21、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;
(4).
【解析】
(1)认真读题,找到题目中的相关信息量,列表统计即可;
(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;
(3)根据图表信息写出一个符合条件的信息即可;
(4)利用树状图确定求解概率.
【详解】
(1)统计表如下:
2017年新能源汽车各类型车型销量情况(单位:万辆)
类型
纯电动
混合动力
总计
新能源乘用车
46.8
11.1
57.9
新能源商用车
18.4
1.4
19.8
(2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,
纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,
补全图形如下:
(3)总销量越高,其个人购买量越大.
(4)画树状图如下:
∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,
∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.
【点睛】
此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.
22、(1)证明见解析;(2)9﹣3π
【解析】
试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
试题解析:(1)如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
∴CF⊥OD, ∴CF是⊙O的切线.
(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.
23、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
【详解】
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+1;
(2)∵A(﹣1,0),B(0,1),
∴OA=OB=1,
∴△AOB是等腰直角三角形,
∴∠BAO=45°.
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PE越大,△PDE的周长越大.
设直线AB的解析式为y=kx+b,则
,解得,
即直线AB的解析式为y=x+1.
设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
所以当x=﹣时,PE最大,△PDE的周长也最大.
当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
即点P坐标为(﹣,)时,△PDE的周长最大.
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
24、(1)证明见解析;(2).
【解析】
试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD•CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
考点:切线的性质.
广东省深圳龙岗区六校联考2021-2022学年中考二模数学试题含解析: 这是一份广东省深圳龙岗区六校联考2021-2022学年中考二模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。
广东省深圳市龙岗区六约校2022年中考联考数学试题含解析: 这是一份广东省深圳市龙岗区六约校2022年中考联考数学试题含解析,共22页。
2021-2022学年广东省深圳市龙岗区龙岗区横岗六约校中考数学最后冲刺模拟试卷含解析: 这是一份2021-2022学年广东省深圳市龙岗区龙岗区横岗六约校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。