![广东省汕头市潮南区胪岗镇2022年中考数学适应性模拟试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13517042/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省汕头市潮南区胪岗镇2022年中考数学适应性模拟试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13517042/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省汕头市潮南区胪岗镇2022年中考数学适应性模拟试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13517042/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省汕头市潮南区胪岗镇2022年中考数学适应性模拟试题含解析
展开
这是一份广东省汕头市潮南区胪岗镇2022年中考数学适应性模拟试题含解析,共22页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
2.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是( )
A.3 B.﹣1 C.﹣3 D.﹣2
3.一元二次方程x2-2x=0的解是( )
A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
4.方程x2﹣kx+1=0有两个相等的实数根,则k的值是( )
A.2 B.﹣2 C.±2 D.0
5.化简(﹣a2)•a5所得的结果是( )
A.a7 B.﹣a7 C.a10 D.﹣a10
6.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是( )
A.﹣8 B.﹣4 C.4 D.8
7.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )
A.7 B. C. D.9
8.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( )
A.83×105 B.0.83×106 C.8.3×106 D.8.3×107
9.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为
A.元 B.元 C.元 D.元
10.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
11.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为( )
A. B. C. D.
12.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有( )
A.2个 B.3个 C.4个 D.5个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.
14.因式分解______.
15.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.
16.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.
17.已知方程组,则x+y的值为_______.
18.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.
20.(6分)在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
求反比例函数的表达式和一次函数表达式;
若点C是y轴上一点,且,直接写出点C的坐标.
21.(6分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
22.(8分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级(2)班参加球类活动人数情况统计表
项目
篮球
足球
乒乓球
排球
羽毛球
人数
a
6
5
7
6
八年级(2)班学生参加球类活动人数情况扇形统计图
根据图中提供的信息,解答下列问题:a= ,b= .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
23.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.
24.(10分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
25.(10分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:
(1)图(1)中的BC长是多少?
(2)图(2)中的a是多少?
(3)图(1)中的图形面积是多少?
(4)图(2)中的b是多少?
26.(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
27.(12分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
A
B
C
笔试
85
95
90
口试
80
85
(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
2、C
【解析】
试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.
【考点】根与系数的关系;一元二次方程的解.
3、A
【解析】
试题分析:原方程变形为:x(x-1)=0
x1=0,x1=1.
故选A.
考点:解一元二次方程-因式分解法.
4、C
【解析】
根据已知得出△=(﹣k)2﹣4×1×1=0,解关于k的方程即可得.
【详解】
∵方程x2﹣kx+1=0有两个相等的实数根,
∴△=(﹣k)2﹣4×1×1=0,
解得:k=±2,
故选C.
【点睛】
本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无实数根.
5、B
【解析】
分析:根据同底数幂的乘法计算即可,计算时注意确定符号.
详解: (-a2)·a5=-a7.
故选B.
点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.
6、B
【解析】
根据反比例函数的图象和性质结合矩形和三角形面积解答.
【详解】
解:作,连接.
∵四边形AHEB,四边形ECOH都是矩形,BE=EC,
∴
故选B.
【点睛】
此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
7、B
【解析】
作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.
【详解】
解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=.
故选B.
8、C
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.
【详解】
830万=8300000=8.3×106.
故选C
【点睛】
本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.
9、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份2023年广东省汕头市潮南区中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省汕头市潮南区胪岗镇重点名校2022年中考数学押题卷含解析,共21页。试卷主要包含了对于不等式组,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学9上2017-2018学年广东省汕头市潮南区胪岗镇上期末数学试卷含解析含答案,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。