甘肃省2022年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
2.如图,AB是的直径,点C,D在上,若,则的度数为
A. B. C. D.
3.下列因式分解正确的是( )
A. B.
C. D.
4.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )
A. B. C. D.
5.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
A. B. C. D.
6.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是( )
A. B. C. D.
7.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.米 B.米
C.米 D.米
8.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
A.60° B.120° C.60°或120° D.30°或120°
9.已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
A.0 B.1 C.2 D.3
10.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )
A.3.5 B.4 C.7 D.14
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.
12.如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_____.
13.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.
14.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
15.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.
16.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.
17.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
三、解答题(共7小题,满分69分)
18.(10分)反比例函数的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
19.(5分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
20.(8分)计算:解不等式组,并写出它的所有整数解.
21.(10分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
∵ ∴
(思考)在上述问题中,h1,h1与h的数量关系为: .
(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
22.(10分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.
23.(12分)先化简,再求值:,其中与2,3构成的三边,且为整数.
24.(14分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
2、B
【解析】
试题解析:连接AC,如图,
∵AB为直径,
∴∠ACB=90°,
∴
∴
故选B.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.
3、C
【解析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
【详解】
解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.
【点睛】
本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
4、A
【解析】
根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.
【详解】
由题意可得,
,
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
5、D
【解析】
根据中心对称图形的概念求解.
【详解】
解:A.不是中心对称图形,本选项错误;
B.不是中心对称图形,本选项错误;
C.不是中心对称图形,本选项错误;
D.是中心对称图形,本选项正确.
故选D.
【点睛】
本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、B
【解析】
首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.
【详解】
∵四边形ABCD为正方形,
∴BA=AD,∠BAD=90°,
∵DE⊥AM于点E,BF⊥AM于点F,
∴∠AFB=90°,∠DEA=90°,
∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,
∴∠ABF=∠EAD,
在△ABF和△DEA中
∴△ABF≌△DEA(AAS),
∴BF=AE;
设AE=x,则BF=x,DE=AF=1,
∵四边形ABED的面积为6,
∴,解得x1=3,x2=﹣4(舍去),
∴EF=x﹣1=2,
在Rt△BEF中,,
∴.
故选B.
【点睛】
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.
7、D
【解析】
先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
故选D
8、C
【解析】
根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
【详解】
如图所示,
∵OD⊥AB,
∴D为AB的中点,即AD=BD=,
在Rt△AOD中,OA=5,AD=,
∴sin∠AOD=,
又∵∠AOD为锐角,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠ACB=∠AOB=60°,
又∵圆内接四边形AEBC对角互补,
∴∠AEB=120°,
则此弦所对的圆周角为60°或120°.
故选C.
【点睛】
此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
9、D
【解析】
解:如图:
利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.
故选:D.
10、A
【解析】
根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.
【详解】
∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.
∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.
故选A.
【点睛】
本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、10°
【解析】
根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
【详解】
∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
∴AD=BD,AE=CE,
∴∠B=∠BAD,∠C=∠CAE,
∵∠B=40°,∠C=45°,
∴∠B+∠C=85°,
∴∠BAD+∠CAE=85°,
∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
故答案为10°
【点睛】
本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
12、2﹣
【解析】
过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论
【详解】
如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,
∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.
∴S弓形AF=S扇形ADF-S△ADF=,
∴ S阴影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.
【点睛】
本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.
13、
【解析】
如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
【详解】
解:∵四边形OABC是矩形,
∴OA=BC,AB=OC,tan∠BOC==,
∴AB=2OA,
∵,OB=,
∴OA=2,AB=2.∵OA′由OA翻折得到,
∴OA′= OA=2.
如图,过点A′作A′D⊥x轴与点D;
设A′D=a,OD=b;
∵四边形ABCO为矩形,
∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
设AB=OC=a,BC=AO=b;
∵OB=,tan∠BOC=,
∴,
解得: ;
由题意得:A′O=AO=2;△ABO≌△A′BO;
由勾股定理得:x2+y2=2①,
由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
联立①②并解得:x=,y=.
故答案为(−,)
【点睛】
该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
14、4.02×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:40.2万=4.02×1,
故答案为:4.02×1.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、21
【解析】
每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元.
16、1
【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.
【详解】
∵DM垂直平分AC,
∴AD=CD,
∴∠DAC=∠C=28°,
∴∠ADB=∠C+∠DAC=28°+28°=56°,
∵AB=BD,
∴∠ADB=∠BAD=56°,
在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.
故答案为1.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.
17、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
【点睛】
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
三、解答题(共7小题,满分69分)
18、(1)y= (2)点B(1,6)在这个反比例函数的图象上
【解析】
(1)设反比例函数的解析式是y=,只需把已知点的坐标代入,即可求得函数解析式;
(2)根据反比例函数图象上点的坐标特征进行判断.
【详解】
设反比例函数的解析式是,
则,
得.
则这个函数的表达式是;
因为,
所以点不在函数图象上.
【点睛】
本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.
19、(1);(2),;(1);(2)
【解析】
试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
列表得:
X
﹣1
0
1
2
1
y
0
1
2
1
0
图象如下.
(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
∴抛物线与x轴的交点为(﹣1,0),(1,0).
∵y=﹣x2+2x+1=﹣(x﹣1)2+2
∴抛物线顶点坐标为(1,2).
(1)由图象可知:
当﹣1<x<1时,抛物线在x轴上方.
(2)由图象可知:
当x>1时,y的值随x值的增大而减小
考点: 二次函数的运用
20、(1);(1)0,1,1.
【解析】
(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果
(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可
【详解】
解:(1)原式=1﹣1× ,
=7﹣.
(1) ,
解不等式①得:x≤1,
解不等式②得:x>﹣1,
∴不等式组的解集是:﹣1<x≤1.
故不等式组的整数解是:0,1,1.
【点睛】
此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键
21、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
【解析】
思考:根据等腰三角形的性质,把代数式化简可得.
探究:当点M在BC延长线上时,连接,可得,化简可得.
应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
【详解】
思考
即
h1+h1=h.
探究
h1-h1=h.
理由.连接,
∵
∴
∴h1-h1=h.
应用
在中,令x=0得y=3;
令y=0得x=-4,则:
A(-4,0),B(0,3)
同理求得C(1,0),
,
又因为AC=5,
所以AB=AC,即△ABC为等腰三角形.
①当点M在BC边上时,
由h1+h1=h得:
1+My=OB,My=3-1=1,
把它代入y=-3x+3中求得:
,
∴;
②当点M在CB延长线上时,
由h1-h1=h得:
My-1=OB,My=3+1=4,
把它代入y=-3x+3中求得:
,
∴,
综上,所求点M的坐标为或.
【点睛】
本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
22、∠CMA =35°.
【解析】
根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
【详解】
∵AB∥CD,∴∠ACD+∠CAB=180°.
又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
又∵AB∥CD,∴∠CMA=∠BAM=35°.
【点睛】
本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
23、1
【解析】
试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.
试题解析:原式= ,
∵a与2、3构成△ABC的三边,
∴3−2 又∵a为整数,
∴a=2或3或4,
∵当x=2或3时,原分式无意义,应舍去,
∴当a=4时,原式==1
24、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
甘肃省兰州市中考数学试卷(含解析版): 这是一份甘肃省兰州市中考数学试卷(含解析版),共29页。试卷主要包含了选择题,四象限,则k的取值可以是,解答题等内容,欢迎下载使用。
2024年甘肃省中考数学试卷【含详细解析】: 这是一份2024年甘肃省中考数学试卷【含详细解析】,共26页。
2024年甘肃省中考数学试卷【含解析】: 这是一份2024年甘肃省中考数学试卷【含解析】,共20页。