甘肃省兰州市绿荫学校2021-2022学年中考三模数学试题含解析
展开这是一份甘肃省兰州市绿荫学校2021-2022学年中考三模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,互为相反数的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=( )
A.3﹣ B.(+1) C.﹣1 D.(﹣1)
2.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
3.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
4.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
5.如图,是的直径,是的弦,连接,,,则与的数量关系为( )
A. B.
C. D.
6.下列各式中,互为相反数的是( )
A.和 B.和 C.和 D.和
7.下列所述图形中,是轴对称图形但不是中心对称图形的是( )
A.线段 B.等边三角形 C.正方形 D.平行四边形
8.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )
A.-5 B.-2 C.3 D.5
9.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是( )
A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2
10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
11.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
成绩(单位:米)
2.10
2.20
2.25
2.30
2.35
2.40
2.45
2.50
人数
2
3
2
4
5
2
1
1
则下列叙述正确的是( )
A.这些运动员成绩的众数是 5
B.这些运动员成绩的中位数是 2.30
C.这些运动员的平均成绩是 2.25
D.这些运动员成绩的方差是 0.0725
12.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )
A.5 B.9 C.15 D.22
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个圆锥的三视图如图,则此圆锥的表面积为______.
14.已知是整数,则正整数n的最小值为___
15.小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由______.
月份
六月
七月
八月
用电量(千瓦时)
290
340
360
月平均用电量(千瓦时)
330
16.已知关于X的一元二次方程有实数根,则m的取值范围是____________________
17.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.
18.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.
20.(6分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
21.(6分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
22.(8分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
23.(8分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
24.(10分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
25.(10分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别
分组(单位:元)
人数
A
0≤x<30
4
B
30≤x<60
16
C
60≤x<90
a
D
90≤x<120
b
E
x≥120
2
请根据以上图表,解答下列问题:填空:这次被调查的同学共有 人,a+b= ,m= ;求扇形统计图中扇形C的圆心角度数;该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
26.(12分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
27.(12分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.
(1)求证:四边形CDBE为矩形;
(2)若AC=2,,求DE的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值.
【详解】
解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;
则BC=2×=-1.
故答案为:-1.
【点睛】
本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍.
2、B
【解析】
由内错角定义选B.
3、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
4、C
【解析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
5、C
【解析】
首先根据圆周角定理可知∠B=∠C,再根据直径所得的圆周角是直角可得∠ADB=90°,然后根据三角形的内角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,从而得到结果.
【详解】
解:∵是的直径,
∴∠ADB=90°.
∴∠DAB+∠B=90°.
∵∠B=∠C,
∴∠DAB+∠C=90°.
故选C.
【点睛】
本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.
6、A
【解析】
根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
【详解】
解:A. =9,=-9,故和互为相反数,故正确;
B. =9,=9,故和不是互为相反数,故错误;
C. =-8,=-8,故和不是互为相反数,故错误;
D. =8,=8故和不是互为相反数,故错误.
故选A.
【点睛】
本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
7、B
【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
8、B
【解析】
当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
【详解】
把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
即k≤-3或k≥1.
所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
故选B.
【点睛】
本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
9、D
【解析】
抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
【详解】
当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
则这条直线解析式为y=﹣x+1.
故选D.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
10、C
【解析】
试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
故选C.
考点:动点问题的函数图象.
11、B
【解析】
根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
【详解】
由表格中数据可得:
A、这些运动员成绩的众数是2.35,错误;
B、这些运动员成绩的中位数是2.30,正确;
C、这些运动员的平均成绩是 2.30,错误;
D、这些运动员成绩的方差不是0.0725,错误;
故选B.
【点睛】
考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
12、B
【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
【详解】
课外书总人数:6÷25%=24(人),
看5册的人数:24﹣5﹣6﹣4=9(人),
故选B.
【点睛】
本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、55cm2
【解析】
由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.
【详解】
由三视图可知,半径为5cm,圆锥母线长为6cm,
∴表面积=π×5×6+π×52=55πcm2,
故答案为: 55πcm2.
【点睛】
本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.
14、1
【解析】
因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】
∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为:1.
【点睛】
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
15、不合理,样本数据不具有代表性
【解析】
根据表中所取的样本不具有代表性即可得到结论.
【详解】
不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).
故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量).
【点睛】
本题考查了统计表,认真分析表中数据是解题的关键.
16、m≤3且m≠2
【解析】
试题解析:∵一元二次方程有实数根
∴4-4(m-2)≥0且m-2≠0
解得:m≤3且m≠2.
17、
【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【详解】
∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,
∴从袋子中随机取出1个球,则它是黑球的概率是:
故答案为:.
【点睛】
本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.
18、3.53×104
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,
35300=3.53×104,
故答案为:3.53×104.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)相切,理由见解析;(1)1.
【解析】
(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
(1)根据勾股定理得出方程,求出方程的解即可.
【详解】
(1)直线BC与⊙O的位置关系是相切,
理由是:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAB,
∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODB=90°,即OD⊥BC,
∵OD为半径,
∴直线BC与⊙O的位置关系是相切;
(1)设⊙O的半径为R,
则OD=OF=R,
在Rt△BDO中,由勾股定理得:OB=BD+OD,
即(R+1) =(1)+R,
解得:R=1,
即⊙O的半径是1.
【点睛】
此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.
20、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【解析】
(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;
(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
【详解】
(1)y=300﹣10(x﹣44),
即y=﹣10x+740(44≤x≤52);
(2)根据题意得(x﹣40)(﹣10x+740)=2400,
解得x1=50,x2=64(舍去),
答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;
(3)w=(x﹣40)(﹣10x+740)
=﹣10x2+1140x﹣29600
=﹣10(x﹣57)2+2890,
当x<57时,w随x的增大而增大,
而44≤x≤52,
所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,
答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【点睛】
本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.
21、(1)A(,0)、B(3,0).
(2)存在.S△PBC最大值为
(3)或时,△BDM为直角三角形.
【解析】
(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC最大值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
22、(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.
【解析】
(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠
OEG=90°,即可得到结论;
(1)根据含30°的直角三角形的性质证明即可;
(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得
∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.
【详解】
解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(1)∵∠AED=90°,∠A=30°,
∴ED=AD,
∵∠A+∠B=90°,
∴∠B=∠BEF=60°,
∵∠BEF+∠DEG=90°,
∴∠DEG=30°,
∵∠ADE+∠A=90°,
∴∠ADE=60°,
∵∠ADE=∠EGD+∠DEG,
∴∠DGE=30°,
∴∠DEG=∠DGE,
∴DG=DE,
∴DG=DA;
(3)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∴∠EGO=30°,
∵阴影部分的面积
解得:r1=4,即r=1,
即⊙O的半径的长为1.
【点睛】
本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
23、 (1)-2 (2)-
【解析】
试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
(2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
=2﹣2×+1﹣3
=2﹣+1﹣3
=﹣2;
(2)•(a2﹣b2)
=•(a+b)(a﹣b)
=a+b,
当a=,b=﹣2时,原式=+(﹣2)=﹣.
24、(1)证明见解析;(2)1.
【解析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;
(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.
【详解】
解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,
∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,
∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,
∴AB=AC;
(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,
在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,
∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,
则⊙O的半径为1.
【点睛】
本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.
25、50;28;8
【解析】
【分析】1)用B组的人数除以B组人数所占的百分比,即可得这次被调查的同学的人数,利用A组的人数除以这次被调查的同学的人数即可求得m的值,用总人数减去A、B、E的人数即可求得a+b的值;
(2)先求得C组人数所占的百分比,乘以360°即可得扇形统计图中扇形的圆心角度数;(3)用总人数1000乘以每月零花钱的数额在范围的人数的百分比即可求得答案.
【详解】解:(1)50,28,8;
(2)(1-8%-32%-16%-4%)× 360°=40%× 360°=144°.
即扇形统计图中扇形C的圆心角度数为144°;
(3)1000×=560(人).
即每月零花钱的数额x元在60≤x<120范围的人数为560人.
【点睛】本题考核知识点:统计图表. 解题关键点:从统计图表获取信息,用样本估计总体.
26、1米.
【解析】
试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.
试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=1.
答:塔杆CH的高为1米.
点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
27、 (1)见解析;(2)1
【解析】
分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.
详解:(1)证明:
∵ CD⊥AB于点D,BE⊥AB于点B,
∴ .
∴ CD∥BE.
又∵ BE=CD,
∴ 四边形CDBE为平行四边形.
又∵,
∴ 四边形CDBE为矩形.
(2)解:∵ 四边形CDBE为矩形,
∴ DE=BC.
∵ 在Rt△ABC中,,CD⊥AB,
可得 .
∵ ,
∴ .
∵ 在Rt△ABC中,,AC=2,,
∴ .
∴ DE=BC=1.
点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.
相关试卷
这是一份2024年甘肃省兰州市学府致远学校中考三模数学试题(原卷版+解析版),共35页。试卷主要包含了选择题,填空题,简答题等内容,欢迎下载使用。
这是一份2023年甘肃省兰州市中考二模数学试题(含解析),共34页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年甘肃省兰州市中考一模数学试题(含解析),共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。