|试卷下载
终身会员
搜索
    上传资料 赚现金
    甘肃省白银市靖远县重点中学2021-2022学年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    甘肃省白银市靖远县重点中学2021-2022学年中考数学仿真试卷含解析01
    甘肃省白银市靖远县重点中学2021-2022学年中考数学仿真试卷含解析02
    甘肃省白银市靖远县重点中学2021-2022学年中考数学仿真试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省白银市靖远县重点中学2021-2022学年中考数学仿真试卷含解析

    展开
    这是一份甘肃省白银市靖远县重点中学2021-2022学年中考数学仿真试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,单项式2a3b的次数是,对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知,下列说法中,不正确的是( )
    A. B.与方向相同
    C. D.
    2.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )

    A.4 B.5 C.6 D.7
    3.将1、、、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是( )

    A. B.6 C. D.
    4.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为(  )

    A.(4,4) B.(3,3) C.(3,1) D.(4,1)
    5.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是(  )
    A.+2 B.﹣3 C.+4 D.﹣1
    6.单项式2a3b的次数是(  )
    A.2 B.3 C.4 D.5
    7.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
    A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
    8.对于二次函数,下列说法正确的是( )
    A.当x>0,y随x的增大而增大
    B.当x=2时,y有最大值-3
    C.图像的顶点坐标为(-2,-7)
    D.图像与x轴有两个交点
    9.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
    A. B. C. D.
    10.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )

    A.5 B.6 C.8 D.12
    二、填空题(共7小题,每小题3分,满分21分)
    11.方程=1的解是___.
    12.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.

    13.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.

    14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.

    15.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.

    16.a(a+b)﹣b(a+b)=_____.
    17.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.

    三、解答题(共7小题,满分69分)
    18.(10分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD.如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F.如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E.

    19.(5分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.
    基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.

    (1)在点,,,中,抛物线的关联点是_____ ;
    (2)如图2,在矩形ABCD中,点,点,
    ①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;
    ②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.
    20.(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).

    请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?

    21.(10分)为营造“安全出行”的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.
    求∠MCD的度数;求摄像头下端点F到地面AB的距离.(精确到百分位)
    22.(10分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.

    23.(12分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
    (1)求证:∠BDA=∠ECA.
    (2)若m=,n=3,∠ABC=75°,求BD的长.
    (3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
    (4)试探究线段BF,AE,EF三者之间的数量关系。

    24.(14分)(11分)阅读资料:
    如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.
    我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.
    问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为 .
    综合应用:
    如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
    ①证明AB是⊙P的切点;
    ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
    【详解】
    A、,故该选项说法错误
    B、因为,所以与的方向相同,故该选项说法正确,
    C、因为,所以,故该选项说法正确,
    D、因为,所以;故该选项说法正确,
    故选:A.
    【点睛】
    本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
    2、B
    【解析】
    先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
    【详解】










    故选:B.
    【点睛】
    本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
    3、B
    【解析】
    根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.
    【详解】
    第一排1个数,第二排2个数.第三排3个数,第四排4个数,
    …第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,
    根据数的排列方法,每四个数一个轮回,
    由此可知:(1,5)表示第1排从左向右第5个数是,
    (13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,
    第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,
    则(1,5)与(13,1)表示的两数之积是1.
    故选B.
    4、A
    【解析】
    利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.
    【详解】
    ∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,
    ∴A点与C点是对应点,
    ∵C点的对应点A的坐标为(2,2),位似比为1:2,
    ∴点C的坐标为:(4,4)
    故选A.
    【点睛】
    本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.
    5、D
    【解析】
    试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,
    由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.
    故选D.
    6、C
    【解析】
    分析:根据单项式的性质即可求出答案.
    详解:该单项式的次数为:3+1=4
    故选C.
    点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.
    7、C
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    解答:解:将361 000 000用科学记数法表示为3.61×1.
    故选C.
    8、B
    【解析】
    二次函数,
    所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
    当x=2时,取得最大值,最大值为-3,选项B正确;
    顶点坐标为(2,-3),选项C错误;
    顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
    故答案选B.
    考点:二次函数的性质.
    9、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故选:A.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    10、B
    【解析】
    试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
    故选B.

    考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质

    二、填空题(共7小题,每小题3分,满分21分)
    11、x=﹣4
    【解析】
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【详解】
    去分母得:3+2x=x﹣1,
    解得:x=﹣4,
    经检验x=﹣4是分式方程的解.
    【点睛】
    此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
    12、2
    【解析】
    连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.
    【详解】
    解:如图,连接PB、PC,
    由二次函数的性质,OB=PB,PC=AC,
    ∵△ODA是等边三角形,
    ∴∠AOD=∠OAD=60°,
    ∴△POB和△ACP是等边三角形,
    ∵A(4,0),
    ∴OA=4,
    ∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×=2,
    即两个二次函数的最大值之和等于2.
    故答案为2.

    【点睛】
    本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.
    13、4.8或
    【解析】
    根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
    【详解】
    ①CP和CB是对应边时,△CPQ∽△CBA,
    所以=,
    即=,
    解得t=4.8;
    ②CP和CA是对应边时,△CPQ∽△CAB,
    所以=,
    即=,
    解得t=.
    综上所述,当t=4.8或时,△CPQ与△CBA相似.
    【点睛】
    此题主要考查相似三角形的性质,解题的关键是分情况讨论.
    14、1.
    【解析】
    设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.
    【详解】
    解:设小矩形的长为x,宽为y,则可列出方程组,
    ,解得,
    则小矩形的面积为6×10=1.
    【点睛】
    本题考查了二元一次方程组的应用.
    15、71
    【解析】
    分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
    详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
    x2=4y2+52,
    ∵△BCD的周长是30,
    ∴x+2y+5=30
    则x=13,y=1.
    ∴这个风车的外围周长是:4(x+y)=4×19=71.
    故答案是:71.
    点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
    16、(a+b)(a﹣b).
    【解析】
    先确定公因式为(a+b),然后提取公因式后整理即可.
    【详解】
    a(a+b)﹣b(a+b)=(a+b)(a﹣b).
    【点睛】
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    17、5或1.
    【解析】
    先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.
    【详解】
    ∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
    ∴AB=5,
    ∵以AD为折痕△ABD折叠得到△AB′D,
    ∴BD=DB′,AB′=AB=5.
    如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.

    设BD=DB′=x,则AF=6+x,FB′=8-x.
    在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.
    解得:x1=5,x5=0(舍去).
    ∴BD=5.
    如图5所示:当∠B′ED=90°时,C与点E重合.

    ∵AB′=5,AC=6,
    ∴B′E=5.
    设BD=DB′=x,则CD=8-x.
    在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.
    解得:x=1.
    ∴BD=1.
    综上所述,BD的长为5或1.

    三、解答题(共7小题,满分69分)
    18、(1)详见解析;(2)详见解析.
    【解析】
    (1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;
    (2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.
    【详解】
    (1)如图所示,CD 即为所求;

    (2)如图,CD 即为所求.
    【点睛】
    本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.
    19、 (1) (2)① ②
    【解析】
    【分析】(1)根据关联点的定义逐一进行判断即可得;
    (2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;
    ②由①知,分两种情况画出图形进行讨论即可得.
    【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;
    ,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;
    ,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;
    ,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,
    故答案为;
    (2)①当时,,,,,
    此时矩形上的所有点都在抛物线的下方,
    ∴,
    ∴,
    ∵,
    ∴;
    ②由①,,
    如图2所示时,CF最长,当CF=4时,即=4,解得:t=,

    如图3所示时,DF最长,当DF=4时,即DF==4,解得 t=,

    故答案为
    【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.
    20、(1)详见解析;(2)40%;(3)105;(4).
    【解析】
    (1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
    (2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
    (3)根据样本估计总体的方法计算即可;
    (4)利用概率公式即可得出结论.
    【详解】
    (1)由条形图知,男生共有:10+20+13+9=52人,
    ∴女生人数为100-52=48人,
    ∴参加武术的女生为48-15-8-15=10人,
    ∴参加武术的人数为20+10=30人,
    ∴30÷100=30%,
    参加器乐的人数为9+15=24人,
    ∴24÷100=24%,
    补全条形统计图和扇形统计图如图所示:
    (2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
    答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
    (3)500×21%=105(人).
    答:估计其中参加“书法”项目活动的有105人.
    (4).
    答:正好抽到参加“器乐”活动项目的女生的概率为.
    【点睛】
    此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、(1) (2)6.03米
    【解析】
    分析:延长ED,AM交于点P,由∠CDE=162°及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.
    详解:(1)如图,延长ED,AM交于点P,
    ∵DE∥AB,
    ∴, 即∠MPD=90°
    ∵∠CDE=162°

    (2)如图,在Rt△PCD中, CD=3米,
    ∴PC = 米
    ∵AC=5.5米, EF=0.4米,
    ∴米
    答:摄像头下端点F到地面AB的距离为6.03米.

    点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.
    22、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)
    【解析】
    (1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;
    (2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.
    【详解】
    (1)∵∠ABO=90°,OB=1,S△BOD=1,
    ∴OB×BD=1,解得BD=2,
    ∴D(1,2)
    将D(1,2)代入y=,
    得2=,
    ∴k=8,
    ∴反比例函数解析式为y=;
    (2)∵∠ABO=90°,OB=1,AB=8,
    ∴A点坐标为(1,8),
    设直线OA的解析式为y=kx,
    把A(1,8)代入得1k=8,解得k=2,
    ∴直线AB的解析式为y=2x,
    解方程组得或,
    ∴C点坐标为(2,1).
    23、135° m+n
    【解析】
    试题分析:
    (1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
    (2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合△ABD≌△AEC可得BD=EC=;
    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;
    (4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
    试题解析:
    (1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
    ∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
    ∴△EAC≌△BAD,
    ∴∠BDA=∠ECA;
    (2)如下图,过点E作EG⊥CB交CB的延长线于点G,
    ∴∠EGB=90°,
    ∵在等腰直角△ABE,∠BAE=90°,AB=m= ,
    ∴∠ABE=45°,BE=2,
    ∵∠ABC=75°,
    ∴∠EBG=180°-75°-45°=60°,
    ∴BG=1,EG=,
    ∴GC=BG+BC=4,
    ∴CE=,
    ∵△EAC≌△BAD,
    ∴BD=EC=;

    (3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,
    ∵BD=EC,
    ∴BD最大=EC最大=,此时∠ABC=180°-∠ABE=180°-45°=135°,
    即当∠ABC=135°时,BD最大=;
    (4)∵△ABD≌△AEC,
    ∴∠AEC=∠ABD,
    ∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
    ∴∠ABD+∠ABE+∠CEB=90°,
    ∴∠BFE=180°-90°=90°,
    ∴EF2+BF2=BE2,
    又∵在等腰Rt△ABE中,BE2=2AE2,
    ∴2AE2=EF2+BF2.
    点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.
    24、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.
    【解析】
    试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;
    综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;
    ②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.
    试题解析:解:问题拓展:设A(x,y)为⊙P上任意一点,
    ∵P(a,b),半径为r,
    ∴AP1=(x﹣a)1+(y﹣b)1=r1.
    故答案为(x﹣a)1+(y﹣b)1=r1;
    综合应用:
    ①∵PO=PA,PD⊥OA,
    ∴∠OPD=∠APD.
    在△POB和△PAB中,

    ∴△POB≌△PAB,
    ∴∠POB=∠PAB.
    ∵⊙P与x轴相切于原点O,
    ∴∠POB=90°,
    ∴∠PAB=90°,
    ∴AB是⊙P的切线;
    ②存在到四点O,P,A,B距离都相等的点Q.
    当点Q在线段BP中点时,
    ∵∠POB=∠PAB=90°,
    ∴QO=QP=BQ=AQ.
    此时点Q到四点O,P,A,B距离都相等.
    ∵∠POB=90°,OA⊥PB,
    ∴∠OBP=90°﹣∠DOB=∠POA,
    ∴tan∠OBP==tan∠POA=.
    ∵P点坐标为(0,6),
    ∴OP=6,OB=OP=3.
    过点Q作QH⊥OB于H,如图3,
    则有∠QHB=∠POB=90°,
    ∴QH∥PO,
    ∴△BHQ∽△BOP,
    ∴===,
    ∴QH=OP=3,BH=OB=4,
    ∴OH=3﹣4=4,
    ∴点Q的坐标为(4,3),
    ∴OQ==5,
    ∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.

    考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.

    相关试卷

    白银市重点中学2021-2022学年中考数学五模试卷含解析: 这是一份白银市重点中学2021-2022学年中考数学五模试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,估计介于等内容,欢迎下载使用。

    2022年甘肃省白银市靖远县中考数学考前最后一卷含解析: 这是一份2022年甘肃省白银市靖远县中考数学考前最后一卷含解析,共21页。试卷主要包含了下列说法正确的是,已知点P等内容,欢迎下载使用。

    2021-2022学年常德市重点中学中考数学仿真试卷含解析: 这是一份2021-2022学年常德市重点中学中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map