福建省厦门外国语校2022年中考数学最后冲刺模拟试卷含解析
展开
这是一份福建省厦门外国语校2022年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列图形是中心对称图形的是,在中,,,,则的值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
A. B. C. D.
2.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=( )
A. B. C. D.
3.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )
A. B.2 C. D.
4.-10-4的结果是( )
A.-7 B.7 C.-14 D.13
5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )
A.5个 B.4个 C.3个 D.2个
6.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )
A. B. C. D.
7.下列图形是中心对称图形的是( )
A. B. C. D.
8.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
动时间(小时)
3
3.5
4
4.5
人数
1
1
2
1
A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
9.在中,,,,则的值是( )
A. B. C. D.
10.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
二、填空题(本大题共6个小题,每小题3分,共18分)
11.分式方程+=1的解为________.
12.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是 。
13.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.
14.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
15.如果点、是二次函数是常数图象上的两点,那么______填“”、“”或“”
16.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.
三、解答题(共8题,共72分)
17.(8分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.
18.(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cos37°= ,tan37°= )
(1)求把手端点A到BD的距离;
(2)求CH的长.
19.(8分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.
对雾霾了解程度的统计表
对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n
请结合统计图表,回答下列问题:统计表中:m= ,n= ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
20.(8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
21.(8分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
分组
频数
4.0≤x<4.2
2
4.2≤x<4.4
3
4.4≤x<4.6
5
4.6≤x<4.8
8
4.8≤x<5.0
17
5.0≤x<5.2
5
(1)求活动所抽取的学生人数;
(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.
22.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
23.(12分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:
收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)
(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:
平均数
中位数
满分率
46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数
中位数
满分率
45.3
49
51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
24.为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;
图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.
2、C
【解析】
由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得 , 求出GM的长,再利用勾股定理求解可得答案.
【详解】
解:∵四边形ABCD和四边形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
则△ADM∽△FGM,
∴,即 ,
解得:GM= ,
∴FM= = = ,
故选:C.
【点睛】
本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.
3、D
【解析】
由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.
【详解】
解:二次函数y=﹣(x﹣1)1+5的大致图象如下:
.
①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
解得:m=﹣1.
当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);
②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,
解得:m=﹣1.
当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=,
或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,
∴m=,
∵m<0,
∴此种情形不合题意,
所以m+n=﹣1+=.
4、C
【解析】
解:-10-4=-1.故选C.
5、C
【解析】
矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;
等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
平行四边形不是轴对称图形,是中心对称图形,不符合题意.
共3个既是轴对称图形又是中心对称图形.
故选C.
6、C
【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
【详解】
解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:
.
故选:C.
【点睛】
本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
7、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
8、C
【解析】
试题解析:这组数据中4出现的次数最多,众数为4,
∵共有5个人,
∴第3个人的劳动时间为中位数,
故中位数为:4,
平均数为:=3.1.
故选C.
9、D
【解析】
首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
【详解】
∵∠C=90°,BC=1,AB=4,
∴,
∴,
故选:D.
【点睛】
本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
数据12000用科学记数法表示为1.2×104,故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据解分式方程的步骤,即可解答.
【详解】
方程两边都乘以,得:,
解得:,
检验:当时,,
所以分式方程的解为,
故答案为.
【点睛】
考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.
12、30°
【解析】
试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.
∵△AOB是正三角形
∴∠AOB=60°
∴∠ACB=30°.
考点:圆周角定理
点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.
13、40cm
【解析】
首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.
【详解】
∵圆锥的底面直径为60cm,
∴圆锥的底面周长为60πcm,
∴扇形的弧长为60πcm,
设扇形的半径为r,
则=60π,
解得:r=40cm,
故答案为:40cm.
【点睛】
本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.
14、1:1.
【解析】
试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
考点:相似三角形的性质.
15、
【解析】
根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,
【详解】
解:二次函数的函数图象对称轴是x=0,且开口向上,
∴在对称轴的左侧y随x的增大而减小,
∵-3>-4,∴>.
故答案为>.
【点睛】
本题考查了二次函数的图像和数形结合的数学思想.
16、4
【解析】
根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.
【详解】
∵二次函数的对称轴为直线x=2, ∴点A的坐标为(4,0),∵点C的坐标为(0,-2),
∴点B的坐标为(4,-2), ∴BC=4,则.
【点睛】
本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.
三、解答题(共8题,共72分)
17、 (1)证明见解析;(2).
【解析】
(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;
(2)根据含30°的直角三角形的性质、正切的定义计算即可.
【详解】
(1)∵AB是⊙O直径,BC⊥AB,
∴BC是⊙O的切线,
∵CD切⊙O于点D,
∴BC=CD;
(2)连接BD,
∵BC=CD,∠C=60°,
∴△BCD是等边三角形,
∴BD=BC=3,∠CBD=60°,
∴∠ABD=30°,
∵AB是⊙O直径,
∴∠ADB=90°,
∴AD=BD•tan∠ABD=.
【点睛】
本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
18、(1)12;(2)CH的长度是10cm.
【解析】
(1)、过点A作于点N,过点M作于点Q,根据Rt△AMQ中α的三角函数得出得出AN的长度;
(2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.
【详解】
解:(1)、过点A作于点N,过点M作于点Q.
在中,.
∴,
∴,
∴.
(2)、根据题意:∥.
∴.
∴.
∵,
∴.
∴.
∴.
∴.
答:的长度是10cm .
点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
19、(1)20;15%;35%;(2)见解析;(3)126°.
【解析】
(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
(2)求出D的学生人数,然后补全统计图即可;
(3)用D的百分比乘360°计算即可得解.
【详解】
解:(1)非常了解的人数为20,
60÷400×100%=15%,
1﹣5%﹣15%﹣45%=35%,
故答案为20;15%;35%;
(2)∵D等级的人数为:400×35%=140,
∴补全条形统计图如图所示:
(3)D部分扇形所对应的圆心角:360°×35%=126°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
20、△A′DE是等腰三角形;证明过程见解析.
【解析】
试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
∴CD=DA=DB,
∴∠DAC=∠DCA,
∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA,
∴∠DA′E=∠DEA′,
∴DA′=DE,
∴△A′DE是等腰三角形.
∵四边形DEFD′是菱形,
∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC,
在△A′DE和△EFC′中,
,
∴△A′DE≌△EFC′.
考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.
21、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
【解析】
【分析】(1)求出频数之和即可;
(2)根据合格率=合格人数÷总人数×100%即可得解;
(3)从两个不同的角度分析即可,答案不唯一.
【详解】(1)∵频数之和=3+6+7+9+10+5=40,
∴所抽取的学生人数为40人;
(2)活动前该校学生的视力达标率=×100%=37.5%;
(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
22、(1);(2)2<m<;(1)m=6或m=﹣1.
【解析】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;
(1)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.
【详解】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,
∴抛物线C的函数表达式为.
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,
由,
消去y得到 ,
由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,
解得2<m<,
∴满足条件的m的取值范围为2<m<.
(1)结论:四边形PMP′N能成为正方形.
理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.
由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在上,∴,解得m=﹣1或﹣﹣1(舍弃),∴m=﹣1时,四边形PMP′N是正方形.
情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍弃),
∴m=6时,四边形PMP′N是正方形.
综上所述:m=6或m=﹣1时,四边形PMP′N是正方形.
23、(1)补充表格见解析;(2)①61;②见解析.
【解析】
(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可.
【详解】
(1)补充表格如下:
范围
25≤x≤29
30≤x≤34
35≤x≤39
40≤x≤44
45≤x≤49
50≤x≤54
55≤x≤59
人数
1
0
3
2
7
3
4
(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,
故答案为:61;
②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
【点睛】
本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.
【解析】
分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;
(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.
详解:(1)设直线AB的解析式为:y=kx+b,
代入A(4,4),B(6,2)得:,
解得:,
∴直线AB的解析式为:y=﹣x+8,
同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,
∵工资及其他费作为:0.4×5+1=3万元,
∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,
当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;
(2)当4≤x≤6时,
w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
∴当x=6时,w1取最大值是1,
当6≤x≤8时,
w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
当x=7时,w2取最大值是1.5,
∴==6,
即最快在第7个月可还清10万元的无息贷款.
点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.
相关试卷
这是一份吉林省长春外国语校2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。
这是一份2022年福建省厦门外国语海沧附属校中考数学模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
这是一份2022届山东省济南外国语校中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了2cs 30°的值等于等内容,欢迎下载使用。