|试卷下载
终身会员
搜索
    上传资料 赚现金
    甘肃省景泰县重点名校2021-2022学年中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    甘肃省景泰县重点名校2021-2022学年中考试题猜想数学试卷含解析01
    甘肃省景泰县重点名校2021-2022学年中考试题猜想数学试卷含解析02
    甘肃省景泰县重点名校2021-2022学年中考试题猜想数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    甘肃省景泰县重点名校2021-2022学年中考试题猜想数学试卷含解析

    展开
    这是一份甘肃省景泰县重点名校2021-2022学年中考试题猜想数学试卷含解析,共23页。试卷主要包含了计算 的结果为,的算术平方根是,如图所示,,结论等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列命题中,错误的是(  )
    A.三角形的两边之和大于第三边
    B.三角形的外角和等于360°
    C.等边三角形既是轴对称图形,又是中心对称图形
    D.三角形的一条中线能将三角形分成面积相等的两部分
    2.若kb<0,则一次函数的图象一定经过( )
    A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
    3.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于(  )
    A. B. C. D.
    4.如图,圆O是等边三角形内切圆,则∠BOC的度数是(  )

    A.60° B.100° C.110° D.120°
    5.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是(  )
    月用电量(度)
    25
    30
    40
    50
    60
    户数
    1
    2
    4
    2
    1
    A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5
    6.计算 的结果为(  )
    A.1 B.x C. D.
    7.的算术平方根是(  )
    A.4 B.±4 C.2 D.±2
    8.已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )

    A. B. C. D.
    9.如图所示,,结论:①;②;③;④,其中正确的是有( )

    A.1个 B.2个 C.3个 D.4个
    10.下列图形中,是中心对称图形,但不是轴对称图形的是( )
    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:__________.
    12.分式方程=1的解为_____
    13.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,则线段BC的长是_____.

    14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.

    15.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.

    16.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).

    17.若不等式(a﹣3)x>1的解集为,则a的取值范围是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)反比例函数的图象经过点A(2,3).
    (1)求这个函数的解析式;
    (2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
    19.(5分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
    (1)n= _____________;
    (2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
    (3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
    (4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.

    20.(8分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).

    (1)求这个抛物线的解析式;
    (2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
    (3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
    21.(10分)在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
    (1)请你求出点A、B、C的坐标;
    (2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.

    22.(10分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.

    23.(12分)解不等式组
    请结合题意填空,完成本题的解答:
    (I)解不等式(1),得   ;
    (II)解不等式(2),得   ;
    (III)把不等式(1)和(2)的解集在数轴上表示出来:
    (IV)原不等式组的解集为   .

    24.(14分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.
    求:△ABD的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据三角形的性质即可作出判断.
    【详解】
    解:A、正确,符合三角形三边关系;
    B、正确;三角形外角和定理;
    C、错误,等边三角形既是轴对称图形,不是中心对称图形;
    D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
    故选:C.
    【点睛】
    本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
    2、D
    【解析】
    根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
    【详解】
    ∵kb<0,
    ∴k、b异号。
    ①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
    ②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
    综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
    故选:D
    【点睛】
    此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
    3、A
    【解析】
    首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
    【详解】
    设此多边形为n边形,
    根据题意得:180(n-2)=1080,
    解得:n=8,
    ∴这个正多边形的每一个外角等于:360°÷8=45°.
    故选A.
    【点睛】
    此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
    4、D
    【解析】
    由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.
    【详解】
    解:∵△ABC是等边三角形,
    ∴∠A=∠ABC=∠ACB=60°,
    ∵圆O是等边三角形内切圆,
    ∴OB、OC是∠ABC、∠ACB的角平分线,
    ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
    ∴∠BOC=180°﹣60=120°,
    故选D.
    【点睛】
    此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).
    5、C
    【解析】
    极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
    【详解】
    解:A、这组数据的极差是:60-25=35,故本选项错误;
    B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
    C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
    D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
    故选:C.
    【点睛】
    本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
    6、A
    【解析】
    根据同分母分式的加减运算法则计算可得.
    【详解】
    原式===1,
    故选:A.
    【点睛】
    本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.
    7、C
    【解析】
    先求出的值,然后再利用算术平方根定义计算即可得到结果.
    【详解】
    =4,
    4的算术平方根是2,
    所以的算术平方根是2,
    故选C.
    【点睛】
    本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.
    8、A
    【解析】
    先求出二次函数的对称轴,结合二次函数的增减性即可判断.
    【详解】
    解:二次函数的对称轴为直线,
    ∵抛物线开口向下,
    ∴当时,y随x增大而增大,
    ∵,

    故答案为:A.
    【点睛】
    本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性.
    9、C
    【解析】
    根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
    【详解】
    解:如图:

    在△AEB和△AFC中,有

    ∴△AEB≌△AFC;(AAS)
    ∴∠FAM=∠EAN,
    ∴∠EAN-∠MAN=∠FAM-∠MAN,
    即∠EAM=∠FAN;(故③正确)
    又∵∠E=∠F=90°,AE=AF,
    ∴△EAM≌△FAN;(ASA)
    ∴EM=FN;(故①正确)
    由△AEB≌△AFC知:∠B=∠C,AC=AB;
    又∵∠CAB=∠BAC,
    ∴△ACN≌△ABM;(故④正确)
    由于条件不足,无法证得②CD=DN;
    故正确的结论有:①③④;
    故选C.
    【点睛】
    此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
    10、A
    【解析】
    分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.
    详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;
    B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
    C、此图形是中心对称图形,也是轴对称图形,故此选项错误;
    D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
    故选A.
    点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3(m-1)2
    【解析】
    试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.
    故答案为:3(m-1)2
    点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
    12、x=0.1
    【解析】
    分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
    详解:方程两边都乘以2(x2﹣1)得,
    8x+2﹣1x﹣1=2x2﹣2,
    解得x1=1,x2=0.1,
    检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
    当x=1时,x﹣1=0,
    所以x=0.1是方程的解,
    故原分式方程的解是x=0.1.
    故答案为:x=0.1
    点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
    13、6
    【解析】
    作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值.再根据勾股定理求BC的长.
    【详解】
    如图:

    作DE⊥AB,交BA的延长线于E,作CF⊥AB,
    ∵AB∥CD,DE⊥AB⊥,CF⊥AB
    ∴CF=DE,且AC=AD
    ∴Rt△ADE≌Rt△AFC
    ∴AE=AF,∠DAE=∠BAC
    ∵tan∠BAC=3
    ∴tan∠DAE=3
    ∴设AE=a,DE=3a
    在Rt△BDE中,BD2=DE2+BE2
    ∴52=(4+a)2+27a2
    解得a1=1,a2=-(不合题意舍去)
    ∴AE=1=AF,DE=3=CF
    ∴BF=AB-AF=3
    在Rt△BFC中,BC==6
    【点睛】
    本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.
    14、﹣2
    【解析】
    连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.
    【详解】
    连结AE,如图1,

    ∵∠BAC=90°,AB=AC,BC=,
    ∴AB=AC=4,
    ∵AD为直径,
    ∴∠AED=90°,
    ∴∠AEB=90°,
    ∴点E在以AB为直径的O上,
    ∵O的半径为2,
    ∴当点O、E. C共线时,CE最小,如图2

    在Rt△AOC中,∵OA=2,AC=4,
    ∴OC=,
    ∴CE=OC−OE=2﹣2,
    即线段CE长度的最小值为2﹣2.
    故答案为:2﹣2.
    【点睛】
    此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.
    15、1.
    【解析】
    先根据题意可证得△ABC∽△ADE,△ABC∽△AFG,再根据△ABC的面积为6分别求出△ADE与△AFG的面积,则四边形DFGE的面积=S△AFG-S△ADE.
    【详解】
    解:∵DE∥BC,,
    ∴△ADE∽△ABC,
    ∵AD=DF=FB,
    ∴=()1,即=()1,∴S△ADE=;
    ∵FG∥BC,∴△AFG∽△ABC,
    =()1,即=()1,∴S△AFG=;
    ∴S四边形DFGE= S△AFG- S△ADE=-=1.故答案为:1.
    【点睛】
    本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
    16、.
    【解析】
    作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
    【详解】
    作AH∥EF交BC于H.

    ∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
    ∵AE=ED=HF,∴.
    ∵BC=2AD,∴2.
    ∵BF=FC,∴,∴.
    ∵.
    故答案为:.
    【点睛】
    本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    17、.
    【解析】
    ∵(a−3)x>1的解集为x<,
    ∴不等式两边同时除以(a−3)时不等号的方向改变,
    ∴a−3<0,
    ∴a<3.
    故答案为a<3.
    点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.

    三、解答题(共7小题,满分69分)
    18、(1)y= (2)点B(1,6)在这个反比例函数的图象上
    【解析】
    (1)设反比例函数的解析式是y=,只需把已知点的坐标代入,即可求得函数解析式;
    (2)根据反比例函数图象上点的坐标特征进行判断.
    【详解】
    设反比例函数的解析式是,
    则,
    得.
    则这个函数的表达式是;
    因为,
    所以点不在函数图象上.
    【点睛】
    本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.
    19、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
    【解析】
    (2)将(0,-2)代入二次函数解析式中即可求出n值;
    (2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
    (2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
    (4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
    【详解】
    解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
    ∴n=﹣2.
    故答案为﹣2.
    (2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
    ∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
    解得:m2=0,m2=﹣2.
    ∵m≠0,
    ∴m=﹣2.
    (2)∵二次函数解析式为y=mx2﹣2mx﹣2,
    ∴二次函数图象的对称轴为直线x=﹣=2.
    ∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
    ∴另一交点的横坐标为2×2﹣4=﹣2,
    ∴另一个交点的坐标为(﹣2,5).
    故答案为(﹣2,5).
    (4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
    ∴0=9m﹣6m﹣2,
    ∴m=2,
    ∴二次函数解析式为y=x2﹣2x﹣2.
    设直线AC的解析式为y=kx+b(k≠0),
    将A(2,0)、C(0,﹣2)代入y=kx+b,得:
    ,解得:,
    ∴直线AC的解析式为y=x﹣2.
    过点P作PD⊥x轴于点D,交AC于点Q,如图所示.

    设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
    ∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
    ∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
    ∴当a=时,△PAC的面积取最大值,最大值为 .
    【点睛】
    本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
    20、【小题1】 设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、 D(0,3)代入,得…………………………………………2分
    即所求抛物线的解析式为:……………………………3分
    【小题2】 如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,
    在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①
    设过A、E两点的一次函数解析式为:y=kx+b(k≠0),
    ∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得
    ∴点E坐标为(-2,3)………………………………………………………………4分
    又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、
    D(0,3),所以顶点C(-1,4)
    ∴抛物线的对称轴直线PQ为:直线x=-1, [中国教#&~@育出%版网]
    ∴点D与点E关于PQ对称,GD=GE……………………………………………②
    分别将点A(1,0)、点E(-2,3)
    代入y=kx+b,得:
    解得:
    过A、E两点的一次函数解析式为:
    y=-x+1
    ∴当x=0时,y=1
    ∴点F坐标为(0,1)……………………5分
    ∴=2………………………………………③
    又∵点F与点I关于x轴对称,
    ∴点I坐标为(0,-1)
    ∴……………………………………④
    又∵要使四边形DFHG的周长最小,由于DF是一个定值,
    ∴只要使DG+GH+HI最小即可 ……………………………………6分
    由图形的对称性和①、②、③,可知,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小
    设过E(-2,3)、I(0,-1)两点的函数解析式为:,
    分别将点E(-2,3)、点I(0,-1)代入,得:
    解得:
    过I、E两点的一次函数解析式为:y=-2x-1
    ∴当x=-1时,y=1;当y=0时,x=-;
    ∴点G坐标为(-1,1),点H坐标为(-,0)
    ∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI
    由③和④,可知:

    DF+EI=
    ∴四边形DFHG的周长最小为. …………………………………………7分
    【小题3】 如图⑤,

    由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:
    解得:,
    过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);
    由图可知,△AOM为直角三角形,且, ………………8分
    要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ……………………………………………………………………………9分
    ①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分
    ②当∠PCM=90°时,CM=,若则,可求出
    P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分
    综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分
    【解析】
    (1)直接利用三点式求出二次函数的解析式;
    (2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,
    由图形的对称性和,可知,HF=HI,GD=GE,
    DG+GH+HF=EG+GH+HI
    只有当EI为一条直线时,EG+GH+HI最小,即
    ,DF+EI=
    即边形DFHG的周长最小为.
    (3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)
    21、(1)A(-4,0)和B(0,4);(2)或
    【解析】
    (1)抛物线解析式配方后,确定出顶点C坐标,对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出A与B坐标;
    (2)分m>0与m<0两种情况求出m的范围即可.
    【详解】
    解:(1)y=mx2+4mx+4m+1=m(x+2)2+1,
    ∴抛物线顶点坐标为C(-2,1),
    对于y=x+4,令x=0,得到y=4;y=0,得到x=-4,
    直线y=x+4与x轴、y轴交点坐标分别为A(-4,0)和B(0,4);
    (2)把x=-4代入抛物线解析式得:y=4m+1,
    ①当m>0时,y=4m+1>0,说明抛物线的对称轴左侧总与线段AB有交点,
    ∴只需要抛物线右侧与线段AB无交点即可,
    如图1所示,

    只需要当x=0时,抛物线的函数值y=4m+1<4,即,
    则当时,抛物线与线段AB只有一个交点;
    ②当m<0时,如图2所示,

    只需y=4m+1≥0即可,
    解得:,
    综上,当或时,抛物线与线段AB只有一个交点.
    【点睛】
    此题考查了抛物线与x轴的交点,二次函数的性质,以及二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解本题的关键.
    22、见解析
    【解析】
    先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
    【详解】

    证明:如图,连接AC.
    ∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
    ∴∠EAC=∠FCA.
    ∵AE=CF,AC=CA, ∴△EAC≌△FCA,
    ∴∠ECA=∠FAC, ∴GA=GC,
    ∴点G在AC的中垂线上,
    ∴点G在BD上.
    【点睛】
    此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
    23、(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.
    【解析】
    分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.
    【详解】
    (I)解不等式(1),得x≥1;
    (Ⅱ)解不等式(2),得x>2;
    (Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:

    (Ⅳ)原不等式组的解集为x≥1.
    【点睛】
    此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.
    24、2.
    【解析】
    试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.
    解:在△ADC中,AD=15,AC=12,DC=9,
    AC2+DC2=122+92=152=AD2,
    即AC2+DC2=AD2,
    ∴△ADC是直角三角形,∠C=90°,
    在Rt△ABC中,BC===16,
    ∴BD=BC﹣DC=16﹣9=7,
    ∴△ABD的面积=×7×12=2.

    相关试卷

    山东省博兴县重点名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份山东省博兴县重点名校2021-2022学年中考试题猜想数学试卷含解析,共19页。试卷主要包含了若正比例函数y=mx,用一根长为a,的相反数是等内容,欢迎下载使用。

    湖北省阳新县重点达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份湖北省阳新县重点达标名校2021-2022学年中考试题猜想数学试卷含解析,共24页。试卷主要包含了是两个连续整数,若,则分别是.等内容,欢迎下载使用。

    2021-2022学年长沙市重点达标名校中考试题猜想数学试卷含解析: 这是一份2021-2022学年长沙市重点达标名校中考试题猜想数学试卷含解析,共18页。试卷主要包含了如图所示,有一条线段是.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map