年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    福建省寿宁县2021-2022学年中考数学最后一模试卷含解析

    福建省寿宁县2021-2022学年中考数学最后一模试卷含解析第1页
    福建省寿宁县2021-2022学年中考数学最后一模试卷含解析第2页
    福建省寿宁县2021-2022学年中考数学最后一模试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省寿宁县2021-2022学年中考数学最后一模试卷含解析

    展开

    这是一份福建省寿宁县2021-2022学年中考数学最后一模试卷含解析,共23页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列说法正确的是(  )
    A.某工厂质检员检测某批灯泡的使用寿命采用普查法
    B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
    C.12名同学中有两人的出生月份相同是必然事件
    D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
    2.计算的结果是( )
    A. B. C.1 D.2
    3.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )

    A.12 B.16 C.20 D.24
    4.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    5.不等式组的解集表示在数轴上正确的是(  )
    A. B. C. D.
    6.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )

    A.(2,1) B.(2,0) C.(3,3) D.(3,1)
    7.下列运算正确的是( )
    A.a3•a2=a6 B.(2a)3=6a3
    C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2
    8.等式组的解集在下列数轴上表示正确的是(    ).
    A.           B.
    C.      D.
    9.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )

    A. B. C. D.
    10.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是

    A. B. C. D.
    11.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是(  )

    A.1 B.2 C.3 D.4
    12.一元二次方程(x+2017)2=1的解为( )
    A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .

    14.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
    15.将一副三角板如图放置,若,则的大小为______.

    16.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟.如果他骑自行车的平均速度是每分钟250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_____________.
    17.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

    18.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解不等式组: .
    20.(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
    21.(6分)已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.
    (1)求证:DE为⊙O的切线;
    (2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G.若GE=2,AF=3,求EF的长.

    22.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.

    (1)求甲组加工零件的数量y与时间之间的函数关系式.
    (2)求乙组加工零件总量的值.
    (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
    23.(8分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
    (1)求李华选择的美食是羊肉泡馍的概率;
    (2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
    24.(10分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
    证明:∽;
    若,求的值;
    如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.

    25.(10分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:

    (1)在这项调查中,共调查了多少名学生?
    (2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.
    (3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.
    26.(12分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
    求证:DE是⊙O的切线;设△CDE的面积为 S1,四边形ABED的面积为 S1.若 S1=5S1,求tan∠BAC的值;在(1)的条件下,若AE=3,求⊙O的半径长.
    27.(12分)(5分)计算:.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
    【详解】
    A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
    B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
    C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
    D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
    故答案选B.
    【点睛】
    本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
    2、A
    【解析】
    根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
    【详解】
    .
    故选A.
    【点睛】
    本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
    3、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    【点睛】
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    4、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    5、C
    【解析】
    根据题意先解出的解集是,
    把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
    表示时要注意方向向左,起始的标记为实心圆点,
    综上所述C的表示符合这些条件.
    故应选C.
    6、A
    【解析】
    根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
    【详解】
    由题意得,△ODC∽△OBA,相似比是,
    ∴,
    又OB=6,AB=3,
    ∴OD=2,CD=1,
    ∴点C的坐标为:(2,1),
    故选A.
    【点睛】
    本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
    7、D
    【解析】
    试题分析:根据同底数幂相乘,底数不变指数相加求解求解;
    根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;
    根据完全平方公式求解;
    根据合并同类项法则求解.
    解:A、a3•a2=a3+2=a5,故A错误;
    B、(2a)3=8a3,故B错误;
    C、(a﹣b)2=a2﹣2ab+b2,故C错误;
    D、3a2﹣a2=2a2,故D正确.
    故选D.
    点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.
    8、B
    【解析】
    【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.
    【详解】,
    解不等式①得,x>-3,
    解不等式②得,x≤2,
    在数轴上表示①、②的解集如图所示,

    故选B.
    【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    9、C
    【解析】
    列表得,


    1

    2

    0

    -1

    1

    (1,1)

    (1,2)

    (1,0)

    (1,-1)

    2

    (2,1)

    (2,2)

    (2,0)

    (2,-1)

    0

    (0,1)

    (0,2)

    (0,0)

    (0,-1)

    -1

    (-1,1)

    (-1,2)

    (-1,0)

    (-1,-1)

    由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为,故选C.
    考点:用列表法(或树形图法)求概率.
    10、A
    【解析】
    分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
    详解:∵四边形ABCD是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=65°
    故选A.
    点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    11、C
    【解析】
    ①根据图象知道:a<1,c>1,∴ac<1,故①正确;
    ②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;
    ③根据图象知道:x=1时,y=a++b+c>1,故③错误;
    ④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.
    其中正确的是①②④.故选C
    12、A
    【解析】
    利用直接开平方法解方程.
    【详解】
    (x+2017)2=1
    x+2017=±1,
    所以x1=-2018,x2=-1.
    故选A.
    【点睛】
    本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    ∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,
    ∴由中点公式得:c=,
    ∴a+b=2c,
    ∴a+b-2c=1.
    故答案为1.
    14、1.
    【解析】
    设P(0,b),
    ∵直线APB∥x轴,
    ∴A,B两点的纵坐标都为b,
    而点A在反比例函数y=的图象上,
    ∴当y=b,x=-,即A点坐标为(-,b),
    又∵点B在反比例函数y=的图象上,
    ∴当y=b,x=,即B点坐标为(,b),
    ∴AB=-(-)=,
    ∴S△ABC=•AB•OP=••b=1.
    15、160°
    【解析】
    试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.
    解:∵∠AOD=20°,∠COD=∠AOB=90°,
    ∴∠COA=∠BOD=90°﹣20°=70°,
    ∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,
    故答案为160°.
    考点:余角和补角.
    16、
    【解析】
    分析:
    根据题意把李明步行和骑车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.
    详解:
    设他推车步行的时间为x分钟,根据题意可得:
    80x+250(15-x)=2900.
    故答案为80x+250(15-x)=2900.
    点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.
    17、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.

    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
    18、(,0)
    【解析】
    试题解析:过点B作BD⊥x轴于点D,

    ∵∠ACO+∠BCD=90°,
    ∠OAC+∠ACO=90°,
    ∴∠OAC=∠BCD,
    在△ACO与△BCD中,

    ∴△ACO≌△BCD(AAS)
    ∴OC=BD,OA=CD,
    ∵A(0,2),C(1,0)
    ∴OD=3,BD=1,
    ∴B(3,1),
    ∴设反比例函数的解析式为y=,
    将B(3,1)代入y=,
    ∴k=3,
    ∴y=,
    ∴把y=2代入y=,
    ∴x=,
    当顶点A恰好落在该双曲线上时,
    此时点A移动了个单位长度,
    ∴C也移动了个单位长度,
    此时点C的对应点C′的坐标为(,0)
    故答案为(,0).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、x

    相关试卷

    福建省厦门市第一中学2021-2022学年中考数学最后一模试卷含解析:

    这是一份福建省厦门市第一中学2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了计算3–,一元二次方程2=1的解为等内容,欢迎下载使用。

    2022年福建省惠安高级中学中考数学最后一模试卷含解析:

    这是一份2022年福建省惠安高级中学中考数学最后一模试卷含解析,共15页。试卷主要包含了最小的正整数是,计算的值,已知抛物线y=,下列运算正确的是等内容,欢迎下载使用。

    2022年福建省龙文区中考数学最后一模试卷含解析:

    这是一份2022年福建省龙文区中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map