甘肃省兰州市五十五中重点名校2021-2022学年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为( )
A.0个 B.1个 C.2个 D.3个
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
3.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27° B.34° C.36° D.54°
4.下列二次根式中,最简二次根式是( )
A. B. C. D.
5.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
6.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )
A.94分,96分 B.96分,96分
C.94分,96.4分 D.96分,96.4分
7.下列调查中,最适合采用全面调查(普查)的是( )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
8.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为( )
A.30° B.45° C.60° D.75°
9.如图所示的几何体的俯视图是( )
A. B. C. D.
10.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元 B.720元 C.1080元 D.2160元
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若,,则代数式的值为__________.
12.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.
13.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
14.分解因式:a2b+4ab+4b=______.
15.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
16.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.
三、解答题(共8题,共72分)
17.(8分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
18.(8分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧的中点,AE与BC交于点F,∠C=2∠EAB.
求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.
19.(8分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
20.(8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
21.(8分)的除以20与18的差,商是多少?
22.(10分)如图所示:△ABC是等腰三角形,∠ABC=90°.
(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);
(2)垂直平分线l交AC于点D,求证:AB=2DH.
23.(12分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.
24.先化简,再求值:,其中
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
解:①由函数图象,得a=120÷3=40,
故①正确,
②由题意,得5.5﹣3﹣120÷(40×2),
=2.5﹣1.5,
=1.
∴甲车维修的时间为1小时;
故②正确,
③如图:
∵甲车维修的时间是1小时,
∴B(4,120).
∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
∴E(5,240).
∴乙行驶的速度为:240÷3=80,
∴乙返回的时间为:240÷80=3,
∴F(8,0).
设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
,,
解得,,
∴y1=80t﹣200,y2=﹣80t+640,
当y1=y2时,
80t﹣200=﹣80t+640,
t=5.2.
∴两车在途中第二次相遇时t的值为5.2小时,
故弄③正确,
④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
∴两车相距的路程为:120﹣80=40千米,
故④正确,
故选A.
2、B
【解析】
①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
【详解】
①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
∴③④⑤正确.
故选B.
【点睛】
本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
3、C
【解析】
由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.
【详解】
解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.
故选C.
考点:切线的性质.
4、C
【解析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A.被开方数含能开得尽方的因数或因式,故A不符合题意,
B.被开方数含能开得尽方的因数或因式,故B不符合题意,
C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,
D.被开方数含分母,故D不符合题意.
故选C.
【点睛】
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
5、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
6、D
【解析】
解:总人数为6÷10%=60(人),
则91分的有60×20%=12(人),
98分的有60-6-12-15-9=18(人),
第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
=(552+1128+1110+1761+900)÷60
=5781÷60
=96.1.
故选D.
【点睛】
本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
7、D
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.
【详解】
A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、A
【解析】
解:∵四边形ABCO是平行四边形,且OA=OC,
∴四边形ABCO是菱形,
∴AB=OA=OB,
∴△OAB是等边三角形,
∴∠AOB=60°,
∵BD是⊙O的直径,
∴点B、D、O在同一直线上,
∴∠ADB=∠AOB=30°
故选A.
9、D
【解析】
找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.
【详解】
从上往下看,该几何体的俯视图与选项D所示视图一致.
故选D.
【点睛】
本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.
10、C
【解析】
根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
【详解】
3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080元,
故选C.
【点睛】
本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-12
【解析】
分析:对所求代数式进行因式分解,把,,代入即可求解.
详解:,,
,
故答案为:
点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
12、
【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
【详解】
设CE=x.
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
在Rt△ABF中,由勾股定理得:
AF2=52-32=16,
∴AF=4,DF=5-4=1.
在Rt△DEF中,由勾股定理得:
EF2=DE2+DF2,
即x2=(3-x)2+12,
解得:x=,
故答案为.
13、1
【解析】
根据多边形的内角和定理:180°•(n-2)求解即可.
【详解】
由题意可得:180°•(n-2)=150°•n,
解得n=1.
故多边形是1边形.
14、b(a+2)2
【解析】
根据公式法和提公因式法综合运算即可
【详解】
a2b+4ab+4b=.
故本题正确答案为.
【点睛】
本题主要考查因式分解.
15、(﹣,1)
【解析】
如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCD是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标(﹣,1),
故答案为(,1).
点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
16、72°
【解析】
首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.
【详解】
∵五边形ABCDE为正五边形,
∴AB=BC=AE,∠ABC=∠BAE=108°,
∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,
∴∠AFE=∠BAC+∠ABE=72°,
故答案为72°.
【点睛】
本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键
三、解答题(共8题,共72分)
17、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
【解析】
(1)依题意代入x的值可得抛物线的表达式.
(2)令y=0可求出x的两个值,再按实际情况筛选.
(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
【详解】
解:(1)如图,设第一次落地时,
抛物线的表达式为
由已知:当时
即
表达式为(或)
(2)令
(舍去).
足球第一次落地距守门员约13米.
(3)解法一:如图,第二次足球弹出后的距离为
根据题意:(即相当于将抛物线向下平移了2个单位)
解得
(米).
答:他应再向前跑17米.
18、(1)证明见解析(2)2
【解析】
(1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是⊙O的切线;
先求出的长,用勾股定理即可求出.
【详解】
解:(1)证明:连结AD,如图,
∵E是的中点,∴
∵
∴
∵AB是⊙O的直径,∴
∴
∴ 即
∴AC是⊙O的切线;
(2)∵
∴
∵,
∴
【点睛】
本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.
19、绳索长为20尺,竿长为15尺.
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
设绳索长、竿长分别为尺,尺,
依题意得:
解得:,.
答:绳索长为20尺,竿长为15尺.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
20、(1)必然,不可能;(2);(3)此游戏不公平.
【解析】
(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;
(2)直接利用概率公式求出答案;
(3)首先画出树状图,进而利用概率公式求出答案.
【详解】
(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;
故答案为必然,不可能;
(2)从中任意抽取1个球恰好是红球的概率是:;
故答案为;
(3)如图所示:
,
由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;
则选择乙的概率为:,
故此游戏不公平.
【点睛】
此题主要考查了游戏公平性,正确列出树状图是解题关键.
21、
【解析】
根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
【详解】
解:×÷(20﹣18)
【点睛】
考查有理数的混合运算,列出式子是解题的关键.
22、 (1)见解析;(2)证明见解析.
【解析】
(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;
(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.
【详解】
解:(1)如图所示:直线l即为所求;
(2)证明:∵点H是AB的中点,且DH⊥AB,
∴DH∥BC,
∴点D是AC的中点,
∵
∴AB=2DH.
【点睛】
考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.
23、.
【解析】
根据零指数幂和特殊角的三角函数值进行计算
【详解】
解:原式=1﹣4×+2﹣
=1﹣2+2﹣
=
【点睛】
本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
24、 ;.
【解析】
先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.
【详解】
解:原式==
把代入得:原式=.
【点睛】
本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.
云南弥勒市重点名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份云南弥勒市重点名校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了一、单选题,内角和为540°的多边形是,下列计算正确的是等内容,欢迎下载使用。
甘肃省天水市名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份甘肃省天水市名校2021-2022学年中考数学模拟预测试卷含解析,共15页。试卷主要包含了实数4的倒数是,如果,那么代数式的值为,一、单选题,下列计算正确的是等内容,欢迎下载使用。
甘肃省东乡族自治县重点名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份甘肃省东乡族自治县重点名校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了一元二次方程=0的两个根是,关于的方程有实数根,则满足等内容,欢迎下载使用。